Answer:
Acceleration of the ship, 
Explanation:
It is given that,
Mass of both ships, 
Distance between two ships, d = 110 m
The gravitational force between two ships is given by :


F = 8.38 N
Let a is the acceleration. Now, using second law of motion as :



So, the acceleration of either ship due to the gravitational attraction of the other is
. Hence, this is the required solution.
Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
Reduce the friction. Since the total energy is conserved, the only way to improve its work capacity is by reducing energy that doesnt go into work.
Since bulb is connected in the closed circuit at the position of D
as well as switch B is also closed in that position so the current will flow through the bulb and bulb will glow in that position
So the most appropriate correct option will be
D. The light bulb will be on