Ans: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Explanation:
In order to be able to calculate the volume of oxygen gas produced by this reaction, you need to know the conditions for pressure and temperature.
Since no mention of those conditions was made, I'll assume that the reaction takes place at STP, Standard Temperature and Pressure.
STP conditions are defined as a pressure of
100 kPa
and a temperature of
0
∘
C
. Under these conditions for pressure and temperature, one mole of any ideal gas occupies
22.7 L
- this is known as the molar volume of a gas at STP.
So, in order to find the volume of oxygen gas at STP, you need to know how many moles of oxygen are produced by this reaction.
The balanced chemical equation for this decomposition reaction looks like this
2
KClO
3(s]
heat
×
−−−→
2
KCl
(s]
+
3
O
2(g]
↑
⏐
⏐
Notice that you have a
2
:
3
mole ratio between potassium chlorate and oxygen gas.
This tells you that the reaction will always produce
3
2
times more moles of oxygen gas than the number of moles of potassium chlorate that underwent decomposition.
Use potassium chlorate's molar mass to determine how many moles you have in that
231-g
sample
231
g
⋅
1 mole KClO
3
122.55
g
=
1.885 moles KClO
3
Use the aforementioned mole ratio to determine how many moles of oxygen would be produced from this many moles of potassium chlorate
1.885
moles KClO
3
⋅
3
moles O
2
2
moles KClO
3
=
2.8275 moles O
2
So, what volume would this many moles occupy at STP?
2.8275
moles
⋅
22.7 L
1
mol
=
64.2 L
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw
Correct Answer: The Sun heats the Earth unevenly; this heating pattern then causes convection currents in the atmosphere.
Answer:The earths plates shifting
Explanation: The movement releases stored-up 'elastic strain' energy in the form of seismic waves, which propagate through the Earth and cause the ground surface to shake.