There isnt enough information to answer the question, the missing variable is "distance from said falling spot and ground"
Answer:
4 m/s
Explanation:
m1 = m2 = m
u1 = 20 m/s, u2 = - 12 m/s
Let the speed of composite body is v after the collision.
Use the conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
m x 20 - m x 12 = (m + m) x v
20 - 12 = 2 v
8 = 2 v
v = 4 m/s
Thus, the speed of teh composite body is 4 m/s.
Answer: The answer is an atom.
Explanation: This is because an atom has fewer neutrons than protons and more electrons than protons
Answer:
v_f = 10.85 m/s
Explanation:
We will apply the law of conservation of momentum here:

where,
m₁ = mass of roller skater = 47 kg
m₂ = mass of bag = 6 kg
v_1i = initial speed of roller skater = 12 m/s
v_2i = initial speed of the bag = 0 m/s
v_1f = final speed of the roller skater = ?
v_2f = final speed of the bag = ?
Both the bag and the skater will have same speed at the end because kater is carrying the bag:
v_1f = v_2f = v_f
Therefore, the equation will become:

<u>v_f = 10.85 m/s</u>