Answer:
As given that the car maintains a constant speed v as it traverses the hill and valley where both the valley and hill have a radius of curvature R.
(i) At point C, the normal force acting on the car is largest because the centripetal force is up. gravity is down and normal force is up. net force is up so magnitude of normal force must be greater than the car's weight.
(ii) At point A, the normal force acting on the car is smallest because the centripetal force is down. gravity is down and normal force is up. net force is up so magnitude of normal force must be less than car's weight.
(iii) At point C, the driver will feel heaviest because the driver's apparent weight is the normal force on her body.
(iv) At point A, the driver will feel the lightest.
(v)The car can go that much fast without losing contact with the road at A can be determined as follow:
Fn=0 - lose contact with road
Fg= mv²/r
mg=mv²/r
v=sqrt (gr)
Newton's 2nd law says: Force = (mass) x (acceleration) .
I wrote Force and acceleration in bold letters because
they're both vectors ... they have size and direction.
The equation is saying that the Force and the acceleration
are both in the same direction.
Before the first behaviorist (Watson), Psychology was a part of philosophy.
<span>A cumulus cloud is puffy and white.
</span><span>Vinegar has a very sour smell.
</span><span>Water boils at 100 degrees Celsius. </span>