Answer:
This shows inertia because inertia is an object's resistance to change in motion. When the person (imma call them a she) who pulled the chair from under the guy did that, the chair was the one affected by the force of the girl, not the guy. The guy continued heading in the direction he was originally going, which was down.
At least, that's about how I would answer this question.
Answer:
a) 5.5×10^17 Hz
b) visible light
Explanation:
Since the wavelength of the electromagnetic radiation must be about the size of the about itself, this implies that;
λ= 5.5 × 10^-10 m
Since;
c= λ f and c= 3×10^8 ms-1
f= c/λ
f= 3×10^8/5.5 × 10^-10
f= 5.5×10^17 Hz
The electromagnetic wave is visible light
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.
The question is looking for "ellipse" and "two" to fill in the blanks.