Near Earth's surface, gravitational acceleration is approximately 9.81 m/s2, which means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.81 metres per second every second.
Answer:Both
Explanation:
There are three ways to increase the induced voltage in electromagnetic induction:
1) increase the speed at which the conductor moves through the magnetic field. This means that the lines of flux are cut more quickly and more emf is induced.
2) use stronger magnets which provides a stronger magnetic field and more densely packed lines of flux.
3) use a coil of multiple loops.
Hence both technicians were correct.
The amount of fluid displaced by a submerged object depends on its volume.
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
They attract and stick together