1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
3 years ago
8

6. Is an object moving in uniform circular motion accelerating? Explain.

Physics
1 answer:
n200080 [17]3 years ago
4 0
An object moving in a circle is accelerating. Accelerating objects are objects which are changing their velocity.
You might be interested in
An empty truck traveling at 10 km/h has kinetic energy. How much kinetic energy does it have when loaded so that its mass and it
Katena32 [7]

Answer:

8 time increase in K.E.

Explanation:

Consider Mass of truck = m kg and speed = v m/s then

K.E. = 1/2 ×mv²

If mass and speed both are doubled i.e let m₀ = 2m and v₀ = 2v then

(K.E.)₀ =  1/2 ×2m(2v)²

(K.E.)₀ = 8 (1/2 × mv²) = 8 × K.E.

7 0
3 years ago
A block of mass m = 3.7 kg is on an inclined plane with a coefficient of friction μ1 = 0.24, at an initial height h = 0.64 m abo
wel

Answer:

a) 0.11825

b) 3.401 m/s

c)  10.72 m  

d) 2.47 m

Explanation:

Given:-

- The mass of the block, m = 3.7 kg

- The angle of the inclined plane, θ = 51°

- The spring constant of inclined spring, k1 = 31 N/m

- The spring constant of horizontal spring, k2 = 6.9 N/m

- The coefficient of friction ( inclined plane ) μ1 = 0.24

- The coefficient of friction ( horizontal surface ) μ2 = 0.055

- The initial compression of inclined spring, Δx = 0.11 m

- The initial height of the block, h = 0.64 m

- The horizontal distance to second spring, d = 0.14 m

a)

Solution:-

- We will denote the distance along the inclined surface as "Δs" that the block travels when released from its initial position: ( xi = Δx ).

- The final position where the block on the inclined plane comes to a stop is x = x1. The displacement Δs can be written as:

                         Δs = xi - x

                        Δs = Δx - x1

Note: The equilibrium position is considered as the origin.

The work-done by the block against friction ( W ):

     

                   W = F*Δs  

                   W = u*m*g*cos ( θ )*Δs

- Use a energy balance for the block between the initial compressed point and the final point on the inclined surface where the block comes to a stop:

                  U1 + Ep1 = Ep2 + W

Where,

          U1 : The elastic potential energy = 0.5*k1*Δx^2  

          Ep1: The initial gravitational potential energy = m*g*( h + Δx*sin ( θ ) )

          Ep2: The final gravitational potential energy = m*g*( h1 )

           

- The change in gravitational potential energy ΔEp = Ep2 - Ep1:

                  ΔEp = Ep2 - Ep1 = -m*g*( h + Δx*sin ( θ ) ) + m*g*( h1 )

                                              = m*g*( (h1 - h) - Δx*sin ( θ ) )

                                              = m*g*( -x1*sin ( θ ) - Δx*sin ( θ ) )

                                              = m*g*sin ( θ )* ( -x1 - Δx )

                                              = - m*g*sin ( θ )*( Δs )

- Use the energy principle expression stated above and solve for Δs:

              0.5*k1*Δx^2  = - m*g*sin ( θ )*( Δs )  + u1*m*g*cos ( θ )*Δs

              0.5*k1*Δx^2 = Δs [ m*g* ( u1*cos ( θ ) - sin ( θ ) ) ]

              0.5*31*0.11^2 = Δs [ 3.7*9.81* ( 0.24*cos ( 51° ) - sin ( 51° ) ) ]

              0.18755 = -22.72588*Δs

              Δs = - 0.00825 m  

The x-coordinate of the resting point would be:

              Δs = Δx - x1

              x1 = Δx - Δs

              x1 = 0.11 - ( -0.00825 )

              x1 = 0.11825 m

b)

Solution:-

Use a energy balance for the block between the initial compressed point and the final point at the bottom of inclined surface where the block has a velocity "u":              

                         U1 + Ep1 = W + Ek + Ep2

Where,

          U1 : The elastic potential energy = 0.5*k1*Δx^2  

          Ep1: The initial gravitational potential energy = m*g*( h + Δx*sin ( θ ) )

          Ek: The kinetic energy at the bottom of inclined surface = 0.5*m*u^2

Note: Taking the horizontal surface as the datum ( Ep2 = 0 )

Therefore,

  0.5*k1*Δx^2 + m*g*( h + Δx*sin ( θ ) ) = u1*m*g*cos ( θ )*Δs + 0.5*m*u^2                          

Where,

Δs: The total distance from initial point to bottom surface = Δx + h / sin ( θ )

 0.5*k1*Δx^2 + m*g*( h + Δx*sin ( θ ) ) = u1*m*g*cos ( θ )*(Δx + h / sin ( θ )) + 0.5*m*u^2  

0.5*31*0.11^2 + 3.7*9.81*( 0.64 + 0.11*sin ( 51° ) ) = 0.24*3.7*9.81*cos ( 51° )* ( 0.11 + 0.64 / sin ( 51° ) ) + 0.5*3.7*u^2

               0.18755 + 26.33296 = 5.11776 + 1.85*u^2

               21.40275 = 1.85*u^2

               u = √( 21.40275 / 1.85 ) = √11.56905

              u = 3.401 m/s  .... Answer

     

c)

Solution:-

- Use a energy balance for the block between the point at the bottom of the inclined surface and the final point where block reaches its maximum distance "s" by doing work against friction:

                                Ek = W1

                   0.5*m*u^2 = μ2*m*g*s

                     0.5*u^2 = μ2*g*s

             s = 0.5*3.401^2 / ( 0.055*9.81)

        s = 10.71893 m ≈ 10.72 m ... Answer

d)  

Solution:-

- The new friction force acting on the block acts for the distance of d = 0.14m.  

- The initial kinetic energy of the block corresponding to the speed ( u ) at the bottom of the inclined surface is reduced to speed ( v ) due to loss of kinetic energy by working against the friction.

- Apply the work-done principle against the new friction over the distance d travelled by the block on the horizontal surface is expressed as:

                          Ek1 = W2 + Ek2  

              0.5*m*u^2 = μ2*m*g*d + 0.5*m*v^2

- The final velocity of block ( v ) after doing work against the friction ( W2 ) can be determined by the above expressed energy principle:

                     u^2 - 2*μ2*g*d = v^2

                     v^2 = 3.40133^2 - 2*(0.055)*(9.81)*(0.14)

                     v = √11.41797

                     v = 3.37904 m/s

- After doing work against the friction the block's kinetic energy is stored into the spring in the form of elastic potential energy ( U2 ).  

- The conservation of energy principle can be applied ( No fictitious work done ).

                                Ek = U2

                    0.5*m*v^2 = 0.5*k2*Δs^2

                   Δs = v*√(m / k2) = 3.37904*√(3.7 /6.9) =  

                   Δs = 2.47440 m ≈ 2.47 m ... Answer

7 0
3 years ago
As a star becomes a giant, its outer layers are expanding. Where does the energy for expanding these layers come from?
san4es73 [151]
The internal combustion of the star. Hydrogen, heat, all creates energy.
6 0
2 years ago
The stimulus intensity that is detected half the time, on average, is called the _____ threshold.
miskamm [114]
The answer to this question is: absolute

Absolute threshold is the lowest intensity of a stimulus that can be detected by an organism. This normal value was determined by taking data of the lowest intensity of the populaion, then taking the 50% percentile value of the data. That means the absolute threshold would be right for half of the population. 
4 0
4 years ago
Which statement best compares and contrasts two physical properties of matter?
Stolb23 [73]

Answer:

D

Explanation:

Boiling points and melting points are similar because they both involve the change in a state of a material, but they are different because boiling point involves a change from a liquid to a gas and melting point involves a change from a solid to a liquid.

5 0
3 years ago
Other questions:
  • A thin, uniformly charged insulating rod has a linear charge density λ = 3 nC/m and lies along the x axis from x = 1m to x = 3m.
    7·1 answer
  • In which state of matter are particles spread farthest apart from another?
    7·2 answers
  • Hello....I need help with this question.
    13·2 answers
  • If your heart is not strong enough or efficient enough, it is difficult to (3 points)
    13·2 answers
  • An object accelerates 20.8 m/s2 when a force of 8.9 newtons is applied. What is the mass of the object?
    15·1 answer
  • What is the wavelength of a sound wave with a frequency of 770 Hz if it speed is 290 m/s?
    15·1 answer
  • A step-down transformer has 1027 turns on the side which draws from a high voltage line (2201 V). How many turns does it need on
    11·1 answer
  • If 478 watts of power are used in 14 seconds,how much work was done
    15·1 answer
  • If a planet has the same mass as the earth, but has twice the radius, how does the surface gravity, g, compare to g on the surfa
    14·1 answer
  • Which wave type is a surface wave?<br> O mechanical<br> O radio<br> O light<br> O electromagnetic
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!