3) science helps us learn to think more critically and weigh evidence better ( I guess this the answer) :)
Solution :
Michaelis-Menten kinetics in the field of biochemistry is considered as one of the well known models for enzyme kinetics. The model represents an equation that describes the enzymatic reactions's rate by relating the reaction rate to the substrate's concentration. The equation is named after the two famous scientists, Leonor Michaelis and Maud Menten.
The formula is :
![$v=\frac{V_{max}[S]}{K_M + [S]}$](https://tex.z-dn.net/?f=%24v%3D%5Cfrac%7BV_%7Bmax%7D%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%24)
where v = velocity of reaction
= maximum rate achieved
= Michaelis constant
[S] = concentration of the substrate, S
According to the question, by putting the velocity of reaction, v as
, we get the above equation as
![$[S]= \frac{K_M}{3}$](https://tex.z-dn.net/?f=%24%5BS%5D%3D%20%5Cfrac%7BK_M%7D%7B3%7D%24)
Therefore the answer is ![$[S]= \frac{K_M}{3}$](https://tex.z-dn.net/?f=%24%5BS%5D%3D%20%5Cfrac%7BK_M%7D%7B3%7D%24)
Answer:
The value is 
Explanation:
From the question we are told that
The volume of liquid nitrogen is 
The density of nitrogen at gaseous form is
= The dry air at sea level
Generally the density of nitrogen at liquid form is

And this is mathematically represented as

=> 
Now the density of gaseous nitrogen is

=> 
Given that the mass is constant


=> 
Answer:
1626.4 N
Explanation:
Given that a 82 kg man, at rest, drops from a diving board 3.0 m above the surface of the water and comes to rest 0.55 s after reaching the water. What force does the water exert on him?
The parameters to be considered are:
Distance S = 3m
Time t = 0.55s
Since the man started from rest, initial velocity u = 0
Using second equation of motion
S = Ut + 1/2at^2
3 = 1/2 × a × 0.55^2
3 = 1/2 × a × 0.3025
a = 3/ 0.15125
a = 19.83 m/s^2
Force = mass × acceleration
Force = 82 × 19.83
Force = 1626.4 N
Therefore, the force that water exerted on him is 1626.4 N
<h3><u>Answer;</u></h3>
1 × 10^-8 M
<h3><u>Explanation</u>;</h3>
pH is given by the -log[H+] while
pOH is given by the -log[OH-]
But;
pH + pOH = 14
Thus; if pH is 6, then pOH = 8
pOH = 8
-log[OH-] = 8
[OH-] = 10^-8 M
The concentration of OH- ions at a pH of 6 is 1 × 10^-8 M