1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
8

Jake has noticed his best friend Alison cheating at chess several times this week. If she gets caught, she will be kicked off th

e chess team, of which she is the president. What should Jake do?
Physics
2 answers:
tensa zangetsu [6.8K]3 years ago
8 0
He should confront her about it and if after that point she continues report it to the chess team
kari74 [83]3 years ago
7 0
The right thing Jake should do it to tell someone of talk to her. It will be hard since she is his best friend, but she is also president of the club, which is important to have integrity in, and if she doesn't, she really shouldn't be the president.
You might be interested in
A very long insulating cylinder has radius R and carries positive charge distributed throughout its volume. The charge distribut
blsea [12.9K]

Answer:

1.E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2.E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3.The results from part 1 and 2 agree when r = R.

Explanation:

The volume charge density is given as

\rho (r) = \alpha (1-\frac{r}{R})

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.

1. Since the cylinder is very long, Gauss’ Law can be applied.

\int {\vec{E}} \, d\vec{a} = \frac{Q_{enc}}{\epsilon_0}

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

\int\, da = 2\pi r h

where ‘h’ is the length of the imaginary Gaussian surface.

Q_{enc} = \int\limits^r_0 {\rho(r)h} \, dr = \alpha h \int\limits^r_0 {(1-r/R)} \, dr = \alpha h (r - \frac{r^2}{2R})\left \{ {{r=r} \atop {r=0}} \right. = \alpha h (\frac{2Rr - r^2}{2R})\\E2\pi rh = \alpha h \frac{2Rr - r^2}{2R\epsilon_0}\\E(r) = \alpha \frac{2R - r}{4\pi \epsilon_0 R}\\E(r) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R})

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

Q_{enc} = \int\limits^R_0 {\rho(r)h} \, dr = \alpha \int\limits^R_0 {(1-r/R)h} \, dr = \alpha h(r - \frac{r^2}{2R})\left \{ {{r=R} \atop {r=0}} \right. = \alpha h(R - \frac{R^2}{2R}) = \alpha h\frac{R}{2} \\E2\pi rh = \frac{\alpha Rh}{2\epsilon_0}\\E(r) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r}

3. At the boundary where r = R:

E(r=R) = \frac{\alpha}{4\pi \epsilon_0}(2 - \frac{r}{R}) = \frac{\alpha}{4\pi \epsilon_0}\\E(r=R) = \frac{1}{4\pi \epsilon_0}\frac{\alpha R}{r} = \frac{\alpha}{4\pi \epsilon_0}

As can be seen from above, two E-field values are equal as predicted.

4 0
3 years ago
A planet exerts a gravitational force of magnitude 4e22 N on a star. If the planet were 3 times closer to the star (that is, if
Alex_Xolod [135]

Answer:

3.6\times10^{23} N

Explanation:

F=\frac{GmM}{r^2}=4\times10^{22} N

F'=\frac{GmM}{(r/3)^2}=9\frac{GmM}{r^2}=9\times4\times10^{22}=3.6\times10^{23} N

7 0
2 years ago
PLEASE HELP THIS IS TIMED I WILL PICK YOU THE BRAINLIEST!!!!!!!!!!!How are secondary colors of light related to the primary colo
Kipish [7]

Explanation:

Because combining primary colors od light like red, blue, and green created secondary colors like yellow, cyan, and magenta

4 0
3 years ago
A small economy car (low mass) and a limousine (high mass) are pushed from rest across a parking lot, equal distances with equal
Studentka2010 [4]

Answer:

The car that receives more kinetic energy is the small economy car.

Explanation:

K.E = 0.5*mv²

Where;

K.E is the kinetic Energy

M is the mass of an object

V is the velocity of the moving object

But F = m(v/t), from Newton's second law of motion

If equal forces were applied to the two cars, then the velocity of each car will be calculated as follows.

v = (Ft/m)

v² = (Ft/m)²

Substitute in the value of v² into Kinetic energy equation

K.E = 0.5*mv²

K.E = 0.5*m(Ft/m)² = (0.5*F²t²)/m

Also assuming equal distance, equal force and assuming equal time for both cars.

The above equation will reduce to, K.E = k/m

Where k = 0.5*F²t², which is equal in both cars.

Thus, Kinetic energy will depend only on the mass of each car.

From the above expression, Kinetic Energy received by each car is inversely proportional to the mass of the car.

A small economy car (low mass)  will receive more kinetic energy while a limousine (high mass) car will receive less kinetic energy.

Therefore, the car that receives more kinetic energy is the small economy car.

6 0
3 years ago
Free fall is a situation in which the only force acting upon an object is gravity. Why do all objects in free fall have the same
Angelina_Jolie [31]

free fall is a special type of motion in which the only force acting upon an object is gravity.  all objects will fall with the same rate of acceleration, regardless of their mass.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A ball is thrown at an angle of to the ground. If the ball lands 90 m away, what was the initial speed of the ball?
    13·1 answer
  • Suppose Earth's gravitational force were decreased by half. How would this change affect a game of basketball? Write a paragraph
    5·1 answer
  • The drawing shows a large cube (mass = 28.6 kg) being accelerated across a horizontal frictionless surface by a horizontal force
    9·1 answer
  • Two trains are traveling on the same track and in the same direction. The first train, which is behind the second train, blows a
    14·1 answer
  • A sailboat took 25 hours to cover 1/4 of a journey. Then, it
    11·1 answer
  • What is the mass of an object that accelerates at 5 m/s2 when pushed with 100 N?
    14·1 answer
  • A year on earth is 365 .26 long a year on Saturn last over 29 times longer than earth which of the following best explains this
    13·1 answer
  • PLEWSE SOMEONE HELP ILL MARK BRAINLIST
    9·2 answers
  • A 755 N force is used to push a 15 Kg box across the floor. What is the acceleration of the box?
    8·2 answers
  • galatics years. the time the solar system takes to circle around the center of mily way galaxy a galatic year is about 230
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!