Answer:
voltage divider, R₂ = 1000 R₁
measuring the output in the resistance R₁
Explanation:
Let's analyze the situation, in an op amp in open gain loop, the gain is maximum G = 10⁶ V / V
in this case the signal generator gives a minimum wave of 1 10⁻³ V, after passing through the amplified it becomes 10³ V which saturates the oscilloscope.
To solve this problem we must use a simple voltage divider, for this we use the fact that in a series circuit the voltage is the sum of the voltages of each element.
If we use two resistors whose relationship is
R₂ / R₁ = 10³
R₂ = 1000 R₁
When measuring the output in the resistance R₁ we have the desired divider, with a tolerance range, for the minimum output of the generator (1 10⁻³V) we have a reading of V = 1 V in the oscilloscope, for which we can use voltage up to 10V on the generator
Answer:
Resonance structures have <u> </u><u>same</u><u> </u> connectivity of atoms and <u> differ only in</u> distribution of electrons.
Explanation:
Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.
Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.
Answer:
That's simply because any electromagnetic wave longer than a microwave is called a radio wave. Microwaves: Obviously used for cooking in microwave ovens, but also for transmitting information in radar equipment. Microwaves are like short-wavelength radio waves. Typical size: 15cm (the length of a pencil).
Answer:
The image distance is 30 cm
image height = - 5 cm
Explanation:
The formula for calculating the image distance is expressed as
1/f = 1/u + 1/v
where
f is the focal length
u is the object distance
v is the image distance
From the information given,
u = 30
f = 15
By substituting these values into the formula,
1/15 = 1/30 + 1/v
1/v = 1/15 - 1/30 = (2 - 1)/30 = 1/30
Taking the reciprocal of both sides,
v = 30
The image distance is 30 cm
magnification = image height/object height = - v/u
Given that object height = 5 cm, then
image height/5 = - 30/30 = - 1
image height = - 5 * 1
image height = - 5 cm
Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.