Answer:
The final velocity of the car is 36 m/s.
Explanation:
Given;
initial velocity of the car, u = 20 m/s
time of the car acceleration, t = 4 s
acceleration of the car, a = 4 m/s²
the final velocity of the car is calculated as;
v = u + at
where;
v is the final velocity of the car
v = 20 + (4 x 4)
v = 36 m/s
Therefore, the final velocity of the car is 36 m/s.
A hand is burned when touching a pot handle
Answer:
C - 50,000 * 77 * 3
Explanation:
At the top of the hill the potential energy is E= mgh= (160 kg)(9.81 m s^-2)(30 m)= 47088
hope it helps ,
<u>help me by marking as brainliest....</u>
Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230