1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sliva [168]
3 years ago
5

Please help me

Physics
1 answer:
Grace [21]3 years ago
6 0

Answer:

a. 60 N*s

b. 60 (kg*m)/s

c. 3 m/s

Explanation:

Givens:

m = 20 kg

v_i = 0 m/s

t = 10 s

F = 6 N

a) Impulse:

I = F*t

I = 6 N*10 s

I = 60 N*s

b) Momentum:

p = v*m

F = m(a)

a = F/m

a = 6 N/20 kg

a = 0.3m/s^2

a = (v_f -v_i)/t

v_f = (0.3 m/s^2)*10 s

v_f = 3.0 m/s

p = 3 m/s*20 kg

p = 60 (kg*m)/s

c. Final velocity

a = (v_f -v_i)/t

v_f = (0.3 m/s^2)*10 s

v_f = 3.0 m/s

You might be interested in
A 0.0550-kg ice cube at −30.0°C is placed in 0.400 kg of 35.0°C water in a very well-insulated container. What is the final temp
KatRina [158]

Answer:

19.34°C

Explanation:

When the ice cube is placed in the water, heat will be transferred from the hot water to it such that the heat gained (Q₁) by the ice is equal to the heat lost(Q₂) by the hot water and a final equilibrium temperature is reached between the melted ice and the cooling/cooled hot water. i.e

Q₁ = -Q₂                  ----------------------(i)

{A} Q₁ is the heat gained by the ice and it is given by the sum of ;

(i) the heat required to raise the temperature of the ice from -30°C to 0°C. This is given by [m₁ x c₁ x ΔT]

<em>Where;</em>

m₁ = mass of ice = 0.0550kg

c₁ = a constant called specific heat capacity of ice = 2108J/kg°C

ΔT₁ = change in the temperature of ice as it melts from -30°C to 0°C = [0 - (-30)]°C = [0 + 30]°C = 30°C

(ii) and the heat required to melt the ice completely - This is called the heat of fusion. This is given by [m₁ x L₁]

Where;

m₁ = mass of ice = 0.0550kg

L₁ = a constant called latent heat of fusion of ice = 334 x 10³J/kg

Therefore,

Q₁ = [m₁ x c₁ x ΔT₁] + [m₁ x L₁]        ------------------(ii)

Substitute the values of m₁, c₁, ΔT₁ and  L₁ into equation (ii) as follows;

Q₁ = [0.0550 x 2108 x 30] + [0.0550 x 334 x 10³]

Q₁ = [3478.2] + [18370]

Q₁ = 21848.2 J

{B} Q₂ is the heat lost by the hot water and is given by

Q₂ = m₂ x c₂ x ΔT₂                -----------------(iii)

Where;

m₂ = mass of water = 0.400kg

c₂ = a constant called specific heat capacity of water = 4200J/Kg°C

ΔT₂ = change in the temperature of water as it cools from 35°C to the final temperature of the hot water (T) = (T - 35)°C

Substitute these values into equation (iii) as follows;

Q₂ = 0.400 x 4200 x (T - 35)

Q₂ = 1680 x (T-35) J

{C} Now to get the final temperature, substitute the values of Q₁ and Q₂ into equation (i) as follows;

Q₁ = -Q₂

=> 21848.2 = - 1680 x (T-35)

=> 35 - T  = 21848.2 / 1680

=> 35 - T  = 13

=> T  = 35 - 13

=> T  = 22

Therefore the final temperature of the hot water is 22°C.

Now let's find the final temperature of the mixture.

The mixture contains hot water at 22°C and melted ice at 0°C

At this temperature, the heat (Q_{W}) due to the hot water will be equal to the negative of the one (Q_{I}) due to the melted ice.

i.e

Q_{W} = -Q_{I}             -----------------(a)

Where;

Q_{I} = m_{I} x c_{I} x ΔT_{I}         [m_{I} = mass of ice, c_{I} = specific heat capacity of melted ice which is now water and ΔT_{I} = change in temperature of the melted ice]

and

Q_{W} = m_{W} x c_{W} x ΔT_{W}    

[m_{W} = mass of water, c_{W} = specific heat capacity of water and ΔT_{W} = change in temperature of the water]

Substitute the values of Q_{W} and Q_{I} into equation (a) as follows

m_{W} x c_{W} x ΔT_{W}   =  - m_{I} x c_{I} x ΔT_{I}

Note that c_{W} and c_{I} are the same since they are both specific heat capacities of water. Therefore, the equation above becomes;

m_{W} x ΔT_{W}   = -m_{I} x ΔT_{I}   -----------------------(b)

Now, let's analyse ΔT_{W} and ΔT_{I}. The final temperature (T_{F}) of the two kinds of water(melted ice and cooled water) are now the same.

=> ΔT_{W} = change in temperature of water = final temperature of water(T_{F}) - initial temperature of water(T_{IW})

ΔT_{W} = T_{F} - T_{IW}

Where;

T_{IW} = 22°C           [which is the final temperature of water before mixture]

=> ΔT_{I} = change in temperature of melted ice = final temperature of water(T_{F}) - initial temperature of melted ice (T_{II})

ΔT_{I} = T_{F} - T_{II}

T_{II} = 0°C     (Initial temperature of the melted ice)

Substitute these values into equation (b) as follows;

m_{W} x ΔT_{W}   =  - m_{I} x ΔT_{I}

0.400 x (T_{F} - T_{IW}) = -0.0550 x (T_{F} - T_{II})

0.400 x (T_{F} - 22) = -0.0550 x (T_{F} - 0)

0.400 x (T_{F} - 22) = -0.0550 x (T_{F})

0.400T_{F} - 8.8 = -0.0550T_{F}

0.400T_{F} + 0.0550T_{F} =  8.8  

0.455T_{F} = 8.8

T_{F} = 19.34°C

Therefore, the final temperature of the mixture is 19.34°C

8 0
3 years ago
It takes 9 sec for a 10 newton force to move an object 4 meters to the right. What is direction &amp; magnitude of the force
lana66690 [7]

Answer:

the question is wrong

Explanation:

  1. M is not given
  2. after 9 second the acceleration multiply by the time divided by two then multiplied by the time is equal to 4 meter
  3. ((10/Mm/s *9s-)
3 0
4 years ago
If the Moon moved farther away from Earth, what would happen to the gravitational force between Earth and the Moon?
trasher [3.6K]
Gravitational forces are stronger over shorter distances, and
weaker over longer distances.  That's a big part of the reason
why our bodies are attracted to the Earth with more force than
we're attracted to Jupiter, for example.

The force doesn't just get weaker in proportion to the distance.
It gets weaker in proportion to the SQUARE of the distance.
8 0
4 years ago
Light travels through space at a speed of 299,792,458 m/s. how fast is that in miles per minute
Bezzdna [24]

Answer:

11 176 943.8 miles per minute

Explanation:

according to a reliable source

4 0
3 years ago
Whenever two apollo astronauts were on the surface of the moon, a third astronaut orbited the moon. assume the orbit to be circu
almond37 [142]
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"

Solution

part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (h=430 km=4.3 \cdot 10^5 m) of the orbit:
r= r_0 + h=1.7 \cdot 10^6 m + 4.3 \cdot 10^5 m=2.13 \cdot 10^6 m
This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude, g=1.08 m/s^2. So we can write
g=a_c= \frac{v^2}{r}
where a_c is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:
v= \sqrt{g r}= \sqrt{(1.08 m/s^2)(2.13 \cdot 10^6 m)}=1517 m/s = 1.52 km/s

part b) The orbit has a circumference of 2 \pi r, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is
T= \frac{2 \pi r}{v} = \frac{2\pi (2.13 \cdot 10^6 m)}{1517 m/s} =8818 s = 2.45 h
So, the period of the orbit is 2.45 hours.
6 0
3 years ago
Other questions:
  • A car designer is designing a new model of a popular car. He wants to use the same engine as in the old model, but improve the n
    11·1 answer
  • What affect does distance have on the force of gravity
    5·1 answer
  • Which interactions are part of the greenhouse effect? Select three options.
    8·2 answers
  • The greek letter (delta) indicates a(n)
    14·1 answer
  • A model rocket is fired vertically and ascends with a constant vertical acceleration of 4.00 m/s2 for 5 s. Its fuel is then exha
    6·1 answer
  • HELP PLS ASAP<br><br> what is a scientific law? pls dont copy and paste. pls put in ur own words.
    7·2 answers
  • Frequency refers to the number of wavelengths that pass a fixed point in a minute. true or false
    10·1 answer
  • During the Dust Bowl in the 1930s, there were huge dust storms caused by drought and wind. Farm areas all across the Midwest wer
    15·2 answers
  • Electron can only lose energy by transition from one allowed orbit to another ______ electromagnetic radiation
    6·1 answer
  • A 20 kω resistor is connected in series with an initially uncharged 100 μf capacitor and a 5 v battery. What is the charge on th
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!