If the speed is higher than the orbital velocity, but not high enough to leave Earth altogether (lower than the escape velocity), it will continue revolving around Earth along an elliptical orbit. (D) for example horizontal speed of 7,300 to approximately 10,000 m/s for Earth.
Answer:
Hello! Your answer is, sound in the air is faster
Explanation:
The speed of sound through air is about 340 meters per second. It's faster through water and it's even faster through steel. Light will travel through a vacuum at 300 million meters per second. So they're totally different scales.
Hope I helped! Ask me anything if you have any questions! Brainiest plz. Hope you make an 100% and have a nice day! -Amelia♥
If an icy surface means no friction, then Newton's second law tells us the net forces on either block are
• <em>m</em> = 1 kg:
∑ <em>F</em> (parallel) = <em>mg</em> sin(45°) - <em>T</em> = <em>ma</em> … … … [1]
∑ <em>F</em> (perpendicular) = <em>n</em> - <em>mg</em> cos(45°) = 0
Notice that we're taking down-the-slope to be positive direction parallel to the surface.
• <em>m</em> = 0.4 kg:
∑ <em>F</em> (vertical) = <em>T</em> - <em>mg</em> = <em>ma</em> … … … [2]
<em />
Adding equations [1] and [2] eliminates <em>T</em>, so that
((1 kg) <em>g</em> sin(45°) - <em>T </em>) + (<em>T</em> - (0.4 kg) <em>g</em>) = (1 kg + 0.4 kg) <em>a</em>
(1 kg) <em>g</em> sin(45°) - (0.4 kg) <em>g</em> = (1.4 kg) <em>a</em>
==> <em>a</em> ≈ 2.15 m/s²
The fact that <em>a</em> is positive indicates that the 1-kg block is moving down the slope. We already found the acceleration is <em>a</em> ≈ 2.15 m/s², which means the net force on the block would be ∑ <em>F</em> = <em>ma</em> ≈ (1 kg) (2.15 m/s²) = 2.15 N directed down the slope.
Heat can be given to a substance without raising its temperature,When a substance is changing its physical state[for eg from solid to liquid and liquid to gas ]. The heat energy which has to be supplied to change the state of substance is called its Latent Heat. Latent heat does not raise the temperature .
Most of the excess energy is released as waste heat into the air surrounding the engine. Small amounts of excess energy are also released as sound energy, and as electrical energy generated by the alternator in a car's engine.