Answer:
The slope intercept form of both given equations is : y = - 3 x - 4.
Step-by-step explanation:
Here, the given equations are:
y +7 = -3 ( x - 1 )
and 3 x + y = - 4
Now,the SLOPE INTERCEPT FORM of any given equation is given as:
y = m x + C : here, C = Y - intercept, m = Slope
Consider equation (1):
y +7 = -3 ( x - 1 ) ⇒ y + 8 = - 3 x + 3
or, y = -3x + 3 - 7 = -3x - 4
⇒ y = -3x -4
Hence, the slope-intercept form of the given equation is y = -3x -4.
Consider equation (2):
3 x + y = - 4 ⇒ y = -4 - 3 x
⇒ y = -3 x - 4
Hence, the slope-intercept form of the given equation is y = -3x -4.
9514 1404 393
Answer:
-0.16
Step-by-step explanation:
The 'a' value can be found by looking at the difference between the y-value of a point 1 unit from the vertex, and the y-value of the vertex.
Here, that is a negative fraction of a unit. If we assume the value is a rational number that can be accurately determined from this graph, then we can find it by looking for a point where the graph crosses a grid intersection. It looks like such grid points are (-7, 0) and (3, 0). The vertex is apparently (-2, 4), so the vertex form of the equation is ...
y = a(x +2)^2 +4
Using the point (3, 0), we have ...
0 = a(3 +2)^2 +4 . . . . . fill in the values of x and y
-4 = 25a . . . . . . . . . . subtract 4; next, divide by 25
a = -4/25 = -0.16
The first answer is C
The second answer is C
The third answer is B
Hope this helps!
Given:


To find:
The quadrant in which
lie.
Solution:
Quadrant concept:
In Quadrant I, all trigonometric ratios are positive.
In Quadrant II, only
and
are positive.
In Quadrant III, only
and
are positive.
In Quadrant IV, only
and
are positive.
We have,


Here,
is negative and
is also negative. It is possible, if
lies in the Quadrant IV.
Therefore, the correct option is D.