Earth's atmosphere is made up of a combination of gases. The major components of nitrogen, oxygen, and argon remain constant over time and space, while trace components like CO2 and water vapor vary considerably over both space and time.
Answer:
(a)

(b) 

Explanation:
Let us take the north direction to be the positive y-axis and the east to be positive x-axis.
First day:
25.0 km southeast, which implies
south of east. The y-component will be negative and the x-component will be positive.


Second day:
She starts off at the stopping point of last day. This time, both the y- and x-components are positive.


Therefore, total displacements:


Magnitude of displacements,

Direction,

Because it's literally impossible to tell exactly where something that size is
located at any particular time.
And that's NOT because it's so small that we can't see it. It's because any
material object behaves as if it's made of waves, and the smaller the object is,
the more the size of its waves get to be like the same size as the object.
When you get down to things the size of subatomic particles, it doesn't make
sense any more to try and talk about where the particle actually "is", and we only
talk about the waves that define it, and how the waves all combine to become a
cloud of <em><u>probability</u></em> of where the particle is.
I know it sounds weird. But that's the way it is. Sorry.
Answer:
254 °C
Explanation:
The average kinetic energy of gas molecules K = 3RT/2N where R = gas constant = 8.314 J/mol-K, N = avogadro's constant = 6.022 × 10²³ atoms/mol
T = temperature in Kelvin.
Let K be its average kinetic energy at t = -19°C = 273 + (-19) = 273 - 19 = 254 K = T. K = 3RT/2N = 3 × 8.314 J/mol-K × 254 K/(2 × 6.022 × 10²³ atoms/mol) = 5.26 × 10⁻²¹ J
When its average kinetic energy doubles, it becomes K₁ = 2K = 2 × 5.26 × 10⁻²¹ = 10.52 × 10⁻²¹ J at temperature T₂. So,
K₁ = 3RT₁/2N
T₁ = 2NK₁/3R
T₁ = 2 × 6.022 × 10²³ atoms/mol × 10.52 × 10⁻²¹ J/3 × 8.314 J/mol-K = 508 K
The temperature difference is thus ΔT = T₁ - T = 508 K - 254 K = 254 K.
Since temperature change in kelvin scale equals temperature change in Celsius scale ΔT = 254 °C
So, we need to change the temperature of the air by 254 °C to double its average kinetic energy.
Inertia. It also is the tendency of an object in motion to stay in motion in one specific direction.