Answer:
The Answer is A They can damage hearing.
Explanation:
I took the Test
The arrows in models of magnetic and electric fields show both their magnitude and direction.
In Physics, a vector refers to a quantity that has both magnitude and direction. Hence, a vector always points in a given direction. The direction in which the arrow points is the direction of the vector in space.
In models of magnetic and electric fields, field vectors depicted by arrows because they represent both their magnitude and direction. The length of the arrow shows magnitude.
Learn more: brainly.com/question/102477
Answer:
We can retain the original diffraction pattern if we change the slit width to d) 2d.
Explanation:
The diffraction pattern of a single slit has a bright central maximum and dimmer maxima on either side. We will retain the original diffraction pattern on a screen if the relative spacing of the minimum or maximum of intensity remains the same when changing the wavelength and the slit width simultaneously.
Using the following parameters: <em>y</em> for the distance from the center of the bright maximum to a place of minimum intensity, <em>m</em> for the order of the minimum, <em>λ </em>for the wavelength, <em>D </em>for the distance from the slit to the screen where we see the pattern and <em>d </em>for the slit width. The distance from the center to a minimum of intensity can be calculated with:

From the above expression we see that if we replace the blue light of wavelength λ by red light of wavelength 2λ in order to retain the original diffraction pattern we need to change the slit width to 2d:
<em> </em>
Acceleration= change in speed/ change in time
30-10= 20 (change in speed)
Time= 10 seconds
20/10= 2
Acceleration= 2 m/s^2
Hope this helps! :)
Answer:
you couldn't do this on your own or search it up on google