1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
3 years ago
7

Inside a freely falling runaway elevator, your

Physics
2 answers:
nasty-shy [4]3 years ago
7 0

The answer is apparent weight is zero.

You are still accelerating downwards at 9.8m/s^2 (if you are on Earth).

You still are being affected by the Earth's gravity.

Not all because of the previous two statements.

Not none because apparent weight is zero as you are falling.

umka21 [38]3 years ago
5 0

Inside a freely falling runaway elevator, your <em>apparent weight is zero,</em> and you have no way to tell that you're inside a freely falling elevator.

Your ACTUAL acceleration is the acceleration of gravity (9.8 m/s² down), but you have no way to test it or measure it.

All you can tell is that you feel weightless.  Any experiment you can do inside the elevator shows you that Newton's laws of motion and gravity are all true, and that electromagnetic waves behave normally.

You might be interested in
The membrane that surrounds a certain type of living cell has a surface area of 5.1 x 10-9 m2 and a thickness of 1.4 x 10-8 m.
ziro4ka [17]

a) The charge on the outer surface is 1.2\cdot 10^{-12} C

b) The number of ions is 7.5\cdot 10^6

Explanation:

a)

The membrane behaves as a parallel plate capacitor, whose capacity is given by the equation

C=\frac{k\epsilon_0 A}{d}

where

k = 4.3 is the dielectric constant

\epsilon_0 =8.85\cdot 10^{-12} F/m is the vacuum permittivity

A=5.1\cdot 10^{-9} m^2 is the surface area

d=1.4\cdot 10^{-8} m is the distance between the two plates

Substituting,

C=\frac{(4.3)(8.85\cdot 10^{-12})(5.1\cdot 10^{-9})}{1.4\cdot 10^{-8}}=1.4\cdot 10^{-11} F

The capacity of the membrane is related to the potential difference between the two surfaces by

C=\frac{Q}{\Delta V}

where here we have

Q = excess charge on one surface

\Delta V = 85.5 mV = 0.0855 V is the potential difference between the two surfaces

Solving for Q, we find

Q=C\Delta V=(1.4\cdot 10^{-11})(0.0855)=1.2\cdot 10^{-12} C

b)

We said that the net charge on the outer surface is

Q=1.2\cdot 10^{-12} C

The charge of one K+ ions is equal to the electron charge

+e=1.6\cdot 10^{-19} C

Therefore, the number of ions on the outer surface can be found by dividing the total charge by the charge of a single ion:

N=\frac{Q}{e}=\frac{1.2\cdot 10^{-12}}{1.6\cdot 10^{-19}}=7.5\cdot 10^6

Learn more about capacity:

brainly.com/question/10427437

brainly.com/question/8892837

brainly.com/question/9617400

#LearnwithBrainly

6 0
3 years ago
Find the electron and hole mobilities, and the resistivity of intrinsic silicon at 300K. Is intrinsic silicon a semiconductor
tino4ka555 [31]

Answer:

Resistivity = 231.481 K Ohm

Yes, Intrinsic Silicon is the semiconductor.

Explanation:

Solution:

At 300K:

Let suppose mobility of electron in intrinsic semiconductor = M_{e}

Mobility of electron in intrinsic semiconductor is:

M_{e}  = 1300 cm^{2}/volt.sec

Let suppose mobility of hole in intrinsic semiconductor = M_{h}

M_{h} = 500 cm^{2}/volt.sec

We know that, intrinsic silicon semiconductor has equal number of holes and electrons. So,

At 300 K

Intrinsic Carrier Concentration = 1.5 x 10^{10}/cm^{3} = C

And,

Conductivity of intrinsic Silicon is:

σ = C x (M_{h} + M_{e}) e

e = 1.6 x 10^{-19} C

So, plugging in the values, we get:

σ = C x (M_{h} + M_{e}) e

σ = 1.5 x 10^{10} x (500 + 1300) x 1.6 x 10^{-19}

σ = 4.32 x 10^{-6}

So, now we can find the resistivity.

Resistivity = 1/σ

Resistivity = 1/ 4.32 x 10^{-6}

Resistivity = 231.481 K Ohm

Yes, Intrinsic Silicon is the semiconductor.

7 0
2 years ago
A World War II bomber flies horizontally over level terrain, with a speed of 287 m/s relative to the ground and at an altitude o
Scorpion4ik [409]

Answer: 7.38 km

Explanation: The attachment shows the illustration diagram for the question.

The range of the bomb's motion as obtained from the equations of motion,

H = u(y) t + 0.5g(t^2)

U(y) = initial vertical component of velocity = 0 m/s

That means t = √(2H/g)

The horizontal distance covered, R,

R = u(x) t = u(x) √(2H/g)

Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2

R = 287 √(2×3240/9.8) = 7380 m = 7.38 km

6 0
3 years ago
How does brainy work
balandron [24]
You have to get points to asked a question and then you can help people to get points and it you want to have friends send them inventions but it you don't have no points you can't asked quenstions
8 0
3 years ago
Read 2 more answers
How much total work is done by the force in lifting the elevator from 0.0 m to 9.0 m?
aksik [14]
The total work is

         (mass of the elevator, kg) x (9.8 m/s²) x (9.0 m)           Joules .
8 0
3 years ago
Other questions:
  • The speed of sound is 330.0 m/s and the wave length of a particular sound wave is 33.0 meters. Calculate the frequency of the so
    5·2 answers
  • Communication with submerged submarines via radio waves is difficult because seawater is conductive and absorbs electromagnetic
    8·1 answer
  • A molecule of water has both partial negative and partial positive charges because _______
    8·1 answer
  • Consider a standing wave in a one dimensional ideal medium of length "D" (like a vibrating string).
    8·1 answer
  • 4) Write down the transformation of energy in torch light.<br>​
    9·1 answer
  • (TIMED) Anyone know the answer to this question?
    7·2 answers
  • Will the April 29th 2020 astroid be the end of humanity as we know it?
    10·2 answers
  • What creates the changes in step 1,2,3 of the nitrogen cycle
    9·1 answer
  • Cold water flows to the solar panels at 15°C. During the day, the panels supply 3.8 kg of hot water
    14·1 answer
  • A net force of 150 N is exerted on a rock. The rock has an acceleration of 20. m/s2 due to this force. What is the mass
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!