Given what we know, we can confirm that the tensional force of a system can in theory be changed without diminishing its force through the use of an ideal pulley.
<h3>What is an ideal pulley?</h3>
- A pulley is a small wheel through which a string or chain is run.
- These are used in order to change the direction of a force.
- An ideal pulley would be one in which there is no friction and the pulley itself would have no mass.
- Therefore, the force would be able to change directions without giving part of its force to the pulley system.
Therefore, we can confirm that the only known way to change the direction of a force without diminishing its value would be through the use of a frictionless and massless pulley system otherwise known as an ideal pulley.
To learn more about Friction visit:
brainly.com/question/13357196?referrer=searchResults
Answer:
summer
Explanation:
Notice the higher density of the rays of the sun hitting straight the latitudes below the equator.
Answer:
d)
Explanation:
Electrons are lost or gained when the ballon is rubbed with a PVC. As the rubber ballon lost electrons, it will have more protons, hence the positive charge. (More protons than electrons in the ballon).
To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.
By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore




Here,
m = mass
g =Gravitational energy
The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

Remember the expression for which you can determine the relationship between mass, volume and density, in which

In this case the density would be that of the object, replacing

Since the displaced volume of water is 0.429 we will have to


The density of water under normal conditions is
, so


The density of the object is 
Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²