Answer: a) 112.88 * 10^3 N/C; b) The electric field point outward from the center of the sphere.
Explanation: In order to solve this problem we have to use the gaussian law so we use a gaussian surface at r=0.965 m and the electric flux is equal to Q inside/εo
E* 4*π*r^2= Q inside/εo
E= k*Q inside/r^2= 9*10^9*(6.53+5.15)μC/(0.965)^2=122.88 * 10 ^3 N/C
Answer:
The maximum temperature rise = 0.047 °C
Explanation:
Potential Energy, P = mgh
Energy transfered, Q=mcΔT
Potential energy = Energy transfered
mgh = mcΔT
gh = cΔT
ΔT = gh/c
ΔT = (9.81 * 20) / 4186
ΔT = 0.047 °C
Answer:
v= s/t
Explanation:
250 km/ h =69.44m/s
S1=2 times 69.44 ≈ 139m
Next 2.5 seconds:
S2 = 100m
Average speed:
v=139m+100m/2s+2.5s = 239/4.5s = 53.2 m/s=192km/h
<span>velocity is defined as the rate of change of displacement irrespective of the length of the path travelled while speed is the average rate of covering distance. but in the liming case where the instantaneous velocity is given as v=dx/dt where dx is the small displacement in a small interval dt, both the speed and velocity have the same magnitude and the direction of velocity is the direction of the tangent to the corresponding displacement-time curve.</span>