Answer:
801.1 kJ
Explanation:
The ice increases in temperature from -20 °C to 0 °C and then melts at 0 °C.
The heat required to raise the ice to 0 °C is Q₁ = mc₁Δθ₁ where m =  mass of ice = 1 kg, c₁ = specific heat capacity of ice = 2108 J/kg°C and Δθ₁ = temperature change. Q₁ = 1 kg × 2108 J/kg°C × (0 - (-20))°C = 2108 J/kg°C × 20  °C = 4216 J
The latent heat required to melt the ice is Q₂ = mL₁ where L₁ = specific latent heat of fusion of ice = 336000 J/kg. Q₁ = 1 kg × 336000 J/kg = 336000 J
The heat required to raise the water to 100 °C is Q₃ = mc₂Δθ₂ where m =  mass of ice = 1 kg, c₂ = specific heat capacity of water = 4187 J/kg°C and Δθ₂ = temperature change. Q₃ = 1 kg × 4187 J/kg°C × (100 - 0)°C = 4187 J/kg°C × 100  °C = 418700 J
The latent heat required to convert the water to steam is Q₄ = mL₂ where L = specific latent heat of vapourisation of water = 2260 J/kg. Q₄ = 1 kg × 2260 J/kg = 2260 J
The heat required to raise the steam to 120 °C is Q₅ = mc₃Δθ₃ where m =  mass of ice = 1 kg, c₃ = specific heat capacity of steam = 1996 J/kg°C and Δθ₃ = temperature change. Q₃ = 1 kg × 1996 J/kg°C × (120 - 100)°C = 1996 J/kg°C × 20  °C = 39920 J
The total amount of heat Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅ = 4216 J + 336000 J
 + 418700 J + 2260 J + 39920 J = 801096 J ≅ 801.1 kJ
 
        
             
        
        
        
Answer:
the answer is D
Explanation:
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object.
 
        
                    
             
        
        
        
Answer:
Gamma rays
Explanation:
Have the highest energies. The shortest wavelengths, and the highest frequencies.
 
        
                    
             
        
        
        
Answer:
A group of protons and neutrons that are surrounded by electrons  I think that's the answer...
Explanation:
 
        
                    
             
        
        
        
Answer:
The average power is calculated as 735.0 W
Solution:
As per the question:
Total mass, M = 1200 kg
Counter mass of the elevator, m = 950
Distance traveled by the elevator, d = 54 m
Time taken, t = 3 min = 180 s
Now, 
To calculate the average power:
First, we find the force needed for lifting the weight:
Force, F = (M - m)g = 
Now, the work done by this force:
W = Fd = 
Average power is given as:
