Answer:
Electromagnetic Force
Explanation:
Every aspect of chemical reaction is the output of electromagnetic force though the forces can take on many forms because of the quantum wave nature of particles.
The electromagnetic force has the ability to attract opposite charges such as protons and electrons and it repels same charges such as electrons and protons.
This force is an important force in the chemical reaction as it it is responsible for bonding between atoms. Though other forces are unique in their own way but they don't affect chemical reaction. Force of gravity is not strong enough to affect chemical reactions; when nuclear forces are involved in a reaction, such reaction is a nuclear reactor; not chemical reaction.
One of the roles of the electromagnetic force in chemical reaction is that it holds the electrons that are in the outer orbit around the nucleus; this, in the long run creates bonds with other chemical elements to create a visible matter.
Answer:
0.00735°C
Explanation:
By seeing the question, we can see the elevation in boiling point with addition of BaCl₂ in water
⠀

⠀
⠀
<u>The</u><u> </u><u>elevation</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>phenomenon</u><u> </u><u>in</u><u> </u><u>which</u><u> </u><u>there</u><u> </u><u>is</u><u> </u><u>increase</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>in</u><u> </u><u>solution</u><u>,</u><u> </u><u>when</u><u> </u><u>the</u><u> </u><u>particular</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>is</u><u> </u><u>added</u><u> </u><u>to</u><u> </u><u>pure</u><u> </u><u>solvent</u><u>.</u>
⠀
⠀

⠀
⠀
Where 'i' is van't hoff factor which represents the ratio of observed osmotic pressure and the value to be expected.
and 'i' is 3 (as given in the question)
⠀
'Kb' is molal boiling point constant. And it's value is 0.51°C/mol(given in question)
⠀
'm' represent the molality of solution. Molatity is no. of moles of solution present in 1kg of solution.
⠀
⠀
<u>To</u><u> </u><u>find</u><u> </u><u>molality</u><u>,</u><u> </u><u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>divide</u><u> </u><u>no</u><u>.</u><u> </u><u>of</u><u> </u><u>moles</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>by</u><u> </u><u>weight</u><u> </u><u>of</u><u> </u><u>solution</u>
⠀
While first we need to no. of moles

⠀
⠀
<u>Now</u><u>,</u><u> </u><u>we</u><u> </u><u>will</u><u> </u><u>find</u><u> </u><u>molality</u>
⠀

⠀
⠀

⠀

⠀
⠀
⠀
<u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>change</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>0</u><u>7</u><u>3</u><u>5</u><u>°</u><u>C</u><u>.</u>
First, we need to calculate the principal quantum number n for this electron, using the equation:
E = (-13.60 eV) / (n x n)
where E is the energy that is used to bound the electron (here, E = - 0.544 eV).
- 0.544 eV = (-13.60 eV) / (n x n)
n x n = (- 13.60 eV) / (- 0.544 eV)
n x n = 25
n = 5
The orbital radius that is equal to the radius of a hydrogen atom is calculated using the equation:
r = 0.053 nm x n x n
r = 0.053 nm x 5 x 5
r = 0.053 nm x 25
r = 1.325 nm
Answer:
It usually leads to more confidence in the results
Answer: The concentrations of A , B , and C at equilibrium are 0.1583 M, 0.2583 M, and 0.1417 M.
Explanation:
The reaction equation is as follows.

Initial : 0.3 0.4 0
Change: -x -x x
Equilbm: (0.3 - x) (0.4 - x) x
We know that, relation between standard free energy and equilibrium constant is as follows.

Putting the given values into the above formula as follows.


x = 0.1417
Hence, at equilibrium
= 0.1583 M
= 0.2583 M