Answer:
Specific gravity is the density of asubstance divided by the density of water. Since (at standard temperature and pressure) water has a density of 1 gram/cm3, and since all of the units cancel, specific gravity is usually very close to the same value as density(but without any units).
Answer:
126.0g of water were initially present
Explanation:
The electrolysis of water occurs as follows:
2H₂O(l) ⇄ 2H₂(g) + O₂(g)
<em>Where 2 moles of water produce 2 moles of hydrogen and 1 mole of oxygen.</em>
<em />
To find the mass of water we need to determine moles of oxygen and hydrogen, thus:
<em>Moles Hydrogen:</em>
14.0g H₂ ₓ (1mol / 2g H₂) = 7 moles H₂
<em>Moles Oxygen:</em>
112.0g O₂ ₓ (1mol / 32g) = 3.5 moles O₂
Based on the chemical equation, the moles of water initially present were 7 moles (That produce 7 moles H₂ and 3.5 moles O₂). The mass of 7 moles of H₂O is:
7 moles H₂O * (18g / mol) =
<h3>126.0g of water were initially present</h3>
Answer:
C) In[reactant] vs. time
Explanation:
For a first order reaction the integrated rate law equation is:
where A(0) = initial concentration of the reactant
A = concentration after time 't'
k = rate constant
Taking ln on both sides gives:
Therefore a plot of ln[A] vs t should give a straight line with a slope = -k
Hence, ln[reactant] vs time should be plotted for a first order reaction.
C funnel because the funnel would have a large enough entrance to put a solid through