Answer:
60 ÷ 5= 12 is the speed, hope it helps
Answer:
Therefore the amplitude of the resultant wave is 
Explanation:
The equation of wave:
y=A sin (kx-ωt)
For wave 1:
y₁=A sin (kx-ωt) =
sin (kx-ωt)
For wave 2:
y₂=A sin (kx-ωt+Φ) =
sin (kx-ωt+Φ)
Where A= amplitude=
The angular frequency 
,
= wave length.
t= time
T= Time period
= phase difference = 
The resultant wave will be
y = y₁ + y₂
=
sin (kx-ωt) +
sin (kx-ωt+Φ)
{sin (kx-ωt) + sin (kx-ωt+Φ)}



Therefore the amplitude of the resultant wave is



Answer:
Utilization, effects
Explanation:
The conductors that carry the current to electrical devices and utilization equipment are the heart of all electrical systems. There are associated effects whenever current flows through a conductor.
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is
