In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
Answer:
I think they cross the line when they force sports into their child's life, and take away their choice of what they want to do so they essentially waste their childhood preparing for something that may never happen or they just don't get the opportunity to explore their artistic abilities.
Explanation:
Answer: c. A person who gains unauthorized access to digital data
Explanation:
Answer:
A. Two strands of nucleotides bonded together at their bases,
twisting to form a double helix
Explanation:
Hope this helps! Can I have brainliest?
Answer:
14.0 cm
Explanation:
Draw a free body diagram of the block. There are three forces: weight force mg pulling down, elastic force k∆L pulling down, and buoyancy ρVg pushing up.
Sum of forces in the y direction:
∑F = ma
ρVg − mg − k∆L = 0
(1000 kg/m³) (4.63 kg / 648 kg/m³) (9.8 m/s²) − (4.63 kg) (9.8 m/s²) − (176 N/m) ∆L = 0
∆L = 0.140 m
∆L = 14.0 cm