Answer:
B. Only wavelengths between infrared and ultraviolet
Explanation:
That is the visible spectrum if you look up a diagram of the light spectrum.
Answer:
<em>The best explanation is that the first person is grounded to the earth, and his/her body either draws up negative charges from the earth, or tend to conducts negative charges to the earth, depending on the charge on the balloon.</em>
Explanation:
The earth is an infinite store for charges. In the first case where the second person brings a negatively charged balloon towards the first person, the negative charges on the balloon induces the first person's body to tend to attract the negative charges on the balloon through the first person's body to the positive charges within the earth. In the second case when again a positively charged balloon is brought near the first person's hair, the positive charges on the balloon induce the first person's body into drawing up negative charges from within the earth. This charges, and their opposite induced charges, create an attractive force between the hair strands and the balloons.
Answer:
The speed of a turtle is 4m/s
Explanation:
speed = distance/time
distance = 100m
time = 25s
s = 100/25
= 4m/s
Electric generator is a device that converts mechanical energy obtained from an external source into electrical energy as an output. It was discovered that the above flow of electric charges could be induced by moving an electrical conductor such as a wire that contains electric charges in a magnetic field
Answer:
h >5/2r
Explanation:
This problem involves the application of the concepts of force and the work-energy theorem.
The roller coaster undergoes circular motion when going round the loop. For the rider to stay in contact with the cart at all times, the roller coaster must be moving with a minimum velocity v such that at the top the rider is in a uniform circular motion and does not fall out of the cart. The rider moves around the circle with an acceleration a = v²/r. Where r = radius of the circle.
Vertically two forces are acting on the rider, the weight and normal force of the cart on the rider. The normal force and weight are acting downwards at the top. For the rider not to fall out of the cart at the top, the normal force on the rider must be zero. This brings in a design requirement for the roller coaster to move at a minimum speed such that the cart exerts no force on the rider. This speed occurs when the normal force acting on the rider is zero (only the weight of the rider is acting on the rider)
So from newton's second law of motion,
W – N = mv²/r
N = normal force = 0
W = mg
mg = ma = mv²/r
mg = mv²/r
v²= rg
v = √(rg)
The roller coaster starts from height h. Its potential energy changes as it travels on its course. The potential energy decreases from a value mgh at the height h to mg×2r at the top of the loop. No other force is acting on the roller coaster except the force of gravity which is a conservative force so, energy is conserved. Because energy is conserved the total change in the potential energy of the rider must be at least equal to or greater than the kinetic energy of the rider at the top of the loop
So
ΔPE = ΔKE = 1/2mv²
The height at the roller coaster starts is usually higher than the top of the loop by design. So
ΔPE =mgh - mg×2r = mg(h – 2r)
2r is the vertical distance from the base of the loop to the top of the loop, basically the diameter of the loop.
In order for the roller coaster to move smoothly and not come to a halt at the top of the loop, the ΔPE must be greater than the ΔKE at the top.
So ΔPE > ΔKE at the top. The extra energy moves the rider the loop from the top.
ΔPE > ΔKE
mg(h–2r) > 1/2mv²
g(h–2r) > 1/2(√(rg))²
g(h–2r) > 1/2×rg
h–2r > 1/2×r
h > 2r + 1/2r
h > 5/2r