Answer:
58.27 N
Explanation:
the data we have is:
mass: 
coefficient of friction: 
and we also know the acceleration of gravity is 
We need to do an analysis of horizontal and vertical forces acting on the object:
-------
Vertically the forces acting on the object:
- Normal force
(acting up from the object)
- weight:
(acting down from)
so the sum of forces in the vertical axis "y" are:

from Newton's second Law we know that
, so:

and since the object is not accelerating in the vertical direction (the movement is only horizontal)
, and:

-----------
now let's analyze the horizontal forces
- frictional force:
and since
--> 
- force to move the object:

and the two forces just mentioned must be opposite, thus the sum of forces in the "x" axis is:

and we are told that the crate moves at a steady speed, thus there is no acceleration: 
and we get:

substituting known values:

Answer: to only change one factor in an experiment or test
Answer:
PAPER CLIPS ON NOSE OF A PAPER AIRPLANE
Purpose: To determine if the number of paperclips on the nose of a paper airplane affects the velocity and speed, measured in meters per seconds.
Make a Hypothesis Based on the Learning Thus Far: If the number of paperclips on the nose of a paper airplane increases, then the speed will _increase______ (increase, decrease, stay the same) in a __linear_______ (linear, exponential, logarithmic) mathematical relationship, and the velocity will (increase, decrease, stay the same) in a __exponential____ (linear, exponential, logarithmic) mathematical relationship. (Fill in the appropriate words for your hypothesis.)
Pictures: Insert at least 3 pictures of yourself conducting the experiment into this lab report. At least 2 pictures must show your face as you conduct the investigation. You may need to ask someone to help take these photos.
Explanation:
The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
The frequency of the wave is 6800 Hz
<u>Explanation:</u>
Given:
Wave number, n = 20
Speed of light, v = 340 m/s
Frequency, f = ?
we know:
wave number = 

Therefore, the frequency of the wave is 6800 Hz