1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
3 years ago
7

Three uses of laser technology

Physics
1 answer:
Misha Larkins [42]3 years ago
7 0
We can use laser technology for:
1. welding
2.laser printing
3.communication

I hope this helps!<span />
You might be interested in
Which change increases the electric force between objects?
Brrunno [24]
Well, the force is proportional to the product of the charges
on the two objects.  So if the objects are already negatively
charged distance between them is unchanged, then adding
electrons to either or both objects would increase the forces
between them.

3 0
3 years ago
Read 2 more answers
A car accelerates uniformly from rest to speed 6.6 m/s in 6.5 s .Find the distance the car travel during this time .​
kirill [66]

Answer:

<em>The distance the car traveled is 21.45 m</em>

Explanation:

<u>Motion With Constant Acceleration </u>

It occurs when an object changes its velocity at the same rate thus the acceleration is constant.

The relation between the initial and final speeds is:

v_f=v_o+at\qquad\qquad [1]

Where:

a   = acceleration

vo = initial speed

vf  = final speed

t    = time

The distance traveled by the object is given by:

\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]

Solving [1] for a:

\displaystyle a=\frac{v_f-v_o}{t}

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:

\displaystyle a=\frac{6.6-0}{6.5}

a = 1.015\ m/s^2

The distance is now calculated with [2]:

\displaystyle x=0*6.5+\frac{1.015*6.5^2}{2}

x = 21.45 m

The distance the car traveled is 21.45 m

6 0
3 years ago
Which is not a step of the scientific method?
Dahasolnce [82]
The six steps of the scientific are:
1. State the question
2. Conduct research
3. Create a hypothesis
4. Perform the experiment
5. Analyze the data
6. Conclusion

So D. would be the correct answer, even though communicating the results could possibly be a step if it's required.
4 0
3 years ago
Tonya is thinking about the topic presented in the text, "Do opposites really attract?" Which of her thoughts is an example of c
tigry1 [53]

tanya is dumb  j j j j j j j j j jj j j j

6 0
3 years ago
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
3 years ago
Other questions:
  • What is the english system of measurement called?
    12·1 answer
  • How to identify a starting position on a line.
    5·1 answer
  • ---&gt;Two aircraft P and Q are flying at the same speed. 300 m/s, The direction along which P is flying is at right angles to t
    10·1 answer
  • Which scientist was the first to accurately measure the speed of light?
    10·2 answers
  • State ohms law and explain the terms associated with it​
    15·2 answers
  • Which of the following is the kinetic rate equation for the addition-elimination mechanism of nucleophilic aromatic substitution
    10·1 answer
  • HELP THIS IS LATE How does the size and temperature of the Sun compare to other stars in the Milky Way galaxy?
    13·1 answer
  • How much time does it take for a car with a speed of 85 m/s to drive a distance of 200 m? (1 point)
    15·1 answer
  • When waves interact do they move through each other or bounce off each other? WILL MARK BRAINLIEST!!!
    10·1 answer
  • The gravitational force between the sun and every object in the solar system helps keep each object in its own unique orbit arou
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!