1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miv72 [106K]
3 years ago
5

Can anyone solve these for my by using unit vectors? Can you also please show your work

Physics
1 answer:
Oxana [17]3 years ago
5 0

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

You might be interested in
A motorist travels at 270 km in p hours at a certain average speed. an expression for the distance that this motorist travelled
wel
Average speed = total distance / time ⇒ total distance = average speed *  time

Average speed = 270 km / p hours
distance = d
hours = x

d = 270/p * x
5 0
3 years ago
Part A If the velocity of a pitched ball has a magnitude of 47.5 m/s and the batted ball's velocity is 51.5 m/s in the opposite
nalin [4]

Explanation:

Let us assume that the mass of a pitched ball is 0.145 kg.

Initial velocity of the pitched ball, u = 47.5 m/s

Final speed of the ball, v = -51.5 m/s (in opposite direction)

We need to find the magnitude of the change in momentum of the ball and the impulse applied to it by the bat. The change in momentum of the ball is given by :

\Delta p=m(v-u)\\\\\Delta p=0.145\times ((-51.5)-47.5)\\\\\Delta p=-14.355\ kg-m/s

So, the magnitude of the change in momentum of the ball is 14.355 kg-m/s.

Let the the ball remains in contact with the bat for 2.00 ms. The impulse is given by :

J=\dfrac{\Delta p}{t}\\\\J=\dfrac{14.355}{2\times 10^{-3}}\\\\J=7177.5\ kg-m/s

Hence, this is the required solution.

7 0
3 years ago
A bicycle is traveling north at 5.0 m/s. The mass of the wheel, 2.0 kg, is uniformly distributed along the rim, which has a radi
andreev551 [17]

Answer:2

Explanation:

Given

Velocity of bicycle is 5 m/s towards north

radius of rim r=20 cm

mass of rim m=2 kg

Angular momentum \vec{L}=I\cdot \vec{\omega }

I=mr^2=2\times 0.2^2=0.08 kg-m^2

\omega =\frac{v}{r}=\frac{5}{0.2}=25 rad/s

L=0.08\times 25=2kg-m^2/s  

direction of Angular momentum will be towards west

7 0
2 years ago
Which of Galileo’s discoveries were later used in Newton’s laws?
Mrrafil [7]

Answer:

a moving object will keep moving if not stopped

the sun being at the center of the solar system

Explanation:

Galileo is known for being the first person make a telescope, there fore being the first person to see that the sun is in the center of the solar system. he also came up with the theory that if something is pushed, it would keep moving until stopped by another force. For example, say you drop your pencil, it keeps falling until it hits the ground. That is exactly what Galileo did in his  Leaning Tower of Pisa experiment and found that theory to be true.

5 0
2 years ago
How long will be required for an object to go from a speed of 22m/s to a speed of 27m/s if the acceleration is 5.93m/s^2 ?
mario62 [17]

Answer:

Required time, t = 0.84 seconds

Explanation:

It is given that,

Initial speed of an object, u = 22 m/s

Final velocity of an object, v = 27 m/s

Acceleration, a = 5.93 m/s²

We have to find the time required for an object to go a speed of 22 m/s to a speed of 27 m/s. It can be solved by using first equation of motion as:

v=u+at

Where

t = time

t=\dfrac{v-u}{a}

t=\dfrac{27\ m/s-22\ m/s}{5.93\ m/s^2}

t = 0.84 seconds

Hence, the time required for an object is 0.84 seconds.

4 0
3 years ago
Other questions:
  • I need help, please help an object starts from rest at time t=0 and moves in the with constant acceleration. The object travels
    9·1 answer
  • The mass of an object with 500 J of kinetic energy moving with a velocity of 5 m/s is ______kg. (Report the answer to one signif
    10·2 answers
  • Consider what happens at the moment when the block leaves the surface of the globe. Which of the following statements are correc
    7·2 answers
  • Electric Cars A 12 volt car battery has a capacity of 100 ampere-hours, supplying 2 A of current for 50 hours. How much ENERGY d
    12·1 answer
  • What type of mage can never be formed by a converging lens?
    11·1 answer
  • What does the stomach acid have in protein digestion
    13·1 answer
  • One-dimensional motion
    9·2 answers
  • ¿Cuál es la frecuencia de una ola con una velocidad de 14 m / s y una longitud de onda de 20 metros?
    11·1 answer
  • Consider a uniformly charged sphere of total charge Q and radius R centered at the origin. We want to find the electric field in
    11·1 answer
  • What is the velocity of an object that has been in free fall for 2.5 s?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!