Answer: The elevator must be accelerating.
Explanation:
As the tension force is opposing to the the force of gravity on the load which is hung vertically, and the tension force can adopt any value in order to comply with Newton's 2nd law, if the tension force is less than the force due to gravity, this means that all system is not in equilibrium, so it must be accelerating.
If we assume that the downward is the positive direction, we can write:
mg - T = ma 
If T = 0.9 mg, ⇒ mg (1-0.9) =0.1 mg = m a ⇒a = 0.1 g , in downward direction.
 
        
             
        
        
        
Explanation:
1. Mass of an object
2. Distance between the objects
 
        
                    
             
        
        
        
heat released Q = 749 joules
heat of fusion of silver L = 109 J/g
Here phase of silver is changing from liquid to solid
so temperature will remain same 
all heat will be released due to its phase change 
and in this case we use Q=mL
where m is the mass of silver in gram
Q= mL
749 = m * 109 
 m = 749/109
 m = 6.87 gram 
 
        
                    
             
        
        
        
The way I do it is suddenly, in the same sort of way that magicians try to pull a table cloth off a table when there's things on the table cloth.The sudden approach acts as an impulse of force and starts to accelerate the roll. But, the piece (assuming it has perforations) is off the roll before the roll can move, due to inertia. Then the roll will acclerate, move, slow down and stop. However, in accelerating, the roll will unravel. The bigger the impulse the more it will unravel.+++++++++++++++++++++++++++++++++++++++If on the other hand, the piece of paper is held firmly, and the roll is pulled, then the impulse is presumably given to the paper and the hand whose inertia is a lot more than that of the roll. So, I think I'd actually go for choice c)+++++++++++++++++++++++++++++++++++++This assumes that the roll is free to rotate.I think that a similar idea is behind the design and use of a "ballistic galvanometer". The charge is passed through the galvanometer quickly, as a current pulse. Then the needle starts to deflect, and the deflection is arranged to depend on the total charge that has passed through in the time of the current pulse.