Hello!
Using Hooke's law, F spring=k delta x, find the distance a spring with an elastic constant of 4 N/cm will stretch if a 2 newton force is applied to it.
Data:
Hooke represented mathematically his theory with the equation:
F = K * Δx
On what:
F (elastic force) = 2 N
K (elastic constant) = 4 N/cm
Δx (deformation or elongation of the elastic medium or distance from a spring) = ?
Solving:




simplify by 2


Answer:
B.) 1/2 cm
_______________________
I Hope this helps, greetings ... Dexteright02! =)
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
Explanation: please see attached file I attached the answer to your question.
Answer:
15km
Explanation:
Given parameters:
Average speed = 60km/hr
Time taken = 15min
Unknown:
Distance = ?
Solution:
The distance traveled can de derived using the expression below;
Distance = Average speed x time taken
Now let us convert the time to hr;
60min = 1hr
15min =
= 0.25hr
Distance = 60km/hr x 0.25hr = 15km
The current made by the circuit produce this effect by generating a magnetic field that attracts the car magnetically to the crane lift and is denoted as option C.
<h3>What is a Crane?</h3>
This is a machine which is used to lift and lower objects which are most times heavy.
It employs the use of magnetic force as it is generated when the button is switched on in this scenario.
Read more about Crane here brainly.com/question/14765960
#SPJ1