1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
2 years ago
6

a 72kg person is standing on a bathroom scale (calibrated in newtons). what is the reading of the scale when the acceleration is

1.6.
Physics
1 answer:
Likurg_2 [28]2 years ago
4 0

Answer:

F=ma

therefore A=F/M

Explanation:

i think that's what your doing but I'm not sure

You might be interested in
If a system has 225 kcal of work done to it, and releases 5.00 × 102 kj of heat into its surroundings, what is the change in int
vovikov84 [41]

We can solve the problem by using the first law of thermodynamics:

\Delta U = Q-W

where

\Delta U is the change in internal energy of the system

Q is the heat absorbed by the system

W is the work done by the system on the surrounding


In this problem, the work done by the system is

W=-225 kcal=-941.4 kJ

with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is

Q=-5 \cdot 10^2 kJ=-500 kJ

with a negative sign as well because it is released by the system.


Therefore, by using the initial equation, we find

\Delta U=Q-W=-500 kJ+941.4 kJ=441.4 kJ

8 0
3 years ago
Which statement best describes how light waves travel in a uniform medium?
Zanzabum
The statement which best describes how light waves travel in an uniform medium is in straight lines. The correct answer will be A. 
5 0
3 years ago
Read 2 more answers
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
What are loops of gas on sun that link different parts of sunspot regions together?
love history [14]
So we want to know what are loops of gas on the Sun that link different parts of sunspot regions together. A large and bright gaseous feature that extends from the surface of the Sun that links different parts of sunspot regions together is called Prominence. They are on the Suns surface in the photosphere and they extend outwards into the Corona. 
7 0
3 years ago
The voltage drop across any component is
earnstyle [38]

Answer:

The voltage si the nevery Hokage de Naruto y fue su amigo

7 0
2 years ago
Other questions:
  • Rounded to the nearest whole number what is the atomic mass of platinum?
    6·1 answer
  • _____ varies with the gravitational force. Plz help. Due tomorrow.
    13·2 answers
  • In 1970, a rocket powered car called Blue Flame achieved a maximum speed of 1.00(10 km/h (278m/s).Suppose the magnitude of the c
    10·1 answer
  • A bowling ball has an initial momentum of +30 kg m/s and hits a stationary bowling pin. After the collision, the bowling ball le
    13·1 answer
  • How is Newtons First Law like Inertia?
    5·1 answer
  • How would a scientist describe a flying Hamster?
    14·2 answers
  • Does someone know how to do math with that equation
    15·1 answer
  • A mass is attached to a spring with an unknown spring constant. The spring gains 10 J of elastic potential energy if stretched b
    13·1 answer
  • A runner begins a race from the starting line and accelerates to a speed of 8.9 m/s. If it takes the runner 3 seconds to reach h
    10·2 answers
  • 50 points for 5 questions p.s if u get brainliest u get 50 moe and then u have 100 SO YAAAAAAY p.s dont answer the new one i for
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!