No it is unsafe. Even if they are empty they cannot
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
Answer:
c.100 minutes
Explanation:
Total distance = 10 km
Runs for 1 km every 5 minutes
walks 1 km every 15 min
She alternates between walking and running so, Jessica will walk 5 km and run 5 Km
Time taken by Jessica for walking
: 5 km
Time taken to walk 1 km=5 minutes
Time taken to walk 5 km
=> 5 X 5
=>25 minutes
Time taken by Jessica for Running
: 5km
Time taken to run 1 km = 15 minutes
=> 5 X 15
=>75 minutes
Total time taken = Time taken by Jessica for walking + Time taken by Jessica for Running
=>25 minutes +75 minutes
=> 100 minutes
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

Answer:
B Eight light-minutes
Explanation:
In the case when the distance separated earth and the sun so here we orbit the sun for a 150 million km distance and the light moves would be 300,000 kilometers per second
Now divide this
= 150 million ÷ 300,000 kilometers per second
= 500 seconds
This 500 seconds represent 8 minutes and 20 seconds
Hence, option B is correct