To answer the two questions, we need to know two important equations involving centripetal movement:
v = ωr (ω represents angular velocity <u>in radians</u>)
a = 
Let's apply the first equation to question a:
v = ωr
v = ((1800*2π) / 60) * 0.26
Wait. 2π? 0.26? 60? Let's break down why these numbers are written differently. In order to use the equation v = ωr, it is important that the units of ω is in radians. Since one revolution is equivalent to 2π radians, we can easily do the conversion from revolutions to radians by multiplying it by 2π. As for 0.26, note that the question asks for the units to be m/s. Since we need meters, we simply convert 26 cm, our radius, into meters. The revolutions is also given in revs/min, and we need to convert it into revs/sec so that we can get our final units correct. As a result, we divide the rate by 60 to convert minutes into seconds.
Back to the equation:
v = ((1800*2π)/60) * 0.26
v = (1800*2(3.14)/60) * 0.26
v = (11304/60) * 0.26
v = 188.4 * 0.26
v = 48.984
v = 49 (m/s)
Now that we know the linear velocity, we can find the centripetal acceleration:
a = 
a = 
a = 9234.6 (m/
)
Wow! That's fast!
<u>We now have our answers for a and b:</u>
a. 49 (m/s)
b. 9.2 *
(m/
)
If you have any questions on how I got to these answers, just ask!
- breezyツ
Not totally sure but i would say a normal? its not refraction or incidence if its perpendicular and i dont think its a mirror if its an imaginary line so yeah normal (normals are always perpendicular to their surface too i think so)
Answer:
The answer is for your question is :
Explanation:
True
Answer:
<em>The final velocity is 20 m/s.</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, and t the time, the final speed can be calculated as follows:

The provided data is: vo=10 m/s,
, t=2 s. The final velocity is:


The final velocity is 20 m/s.
I think it's A) Sunspots. I hope this helps:)