The density of the solid object will be 2.63 g/mL
<h3>What is density?</h3>
Density of objects = mass/volume.
Recall that an object will always displace its own volume when placed in a liquid.
Volume of the solid object = Cylinder reading after immersing the object in the water - cylinder reading before immersing the object in the water.
= 48.1 - 20.4
= 27.8 mL
Mass of the solid object = 73.05 g
Density of the object = 73.05/27.8
= 2.63 g/mL
More on density can be found here: brainly.com/question/15164682
#SPJ1
HEY THERE!
THE ANSWER IS: the properties of an ideal gas are: An ideal gas consists of a large number of identical molecules. The volume occupied by the molecules themselves is negligible compared to the volume occupied by the gas. The molecules obey Newton's laws of motion, and they move in random motion.
CREDITS:<span>physics.bu.edu/~duffy/py105/Idealgas.htm</span>
Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=
Answer:
In 1 mol of Pb₃(PO₄)₄ occupies 1001.48 grams
Explanation:
This compound is the lead (IV) phosphate.
Grams that occupy 1 mole, means the molar mass of the compound
Pb = 207.2 .3 = 621.6 g/m
P = 30.97 .4 = 123.88 g/m
O = (16 . 4) . 4 = 256 g/m
621.6 g/m + 123.88 g/m + 256 g/m = 1001.48 g/m