For both of them, used the balanced equation and it’s mole ratio to convert whatever you need to into moles. See the attacked work.
1) D 5 mols
2) A 0.55 mols
The solvent is usually referred to as the component of a solution which is present as the one with the larger quantity and in most cases as the liquid which dissolves a solid. In a solution, there are two components namely the solvent and the solute. The solute is the one in smaller amount.
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
14.8 × 10²³ molecules
Explanation:
Given data:
Mass of sulfuric acid = 240 g
Number of molecules = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Number of moles of sulfuric acid
<em>Number of moles = mass/ molar mass</em>
Number of moles = 240 g/ 98 g/mol
Number of moles = 2.45 mol
Number of molecules:
1 mole = 6.022 × 10²³ molecules
2.45 × 6.022 × 10²³ molecules
14.8 × 10²³ molecules