Mol of Kr gas = 1.244
<h3>Further explanation</h3>
In general, the gas equation can be written
<h3> PV=nRT
</h3>
where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08205 L.atm / mol K
T = temperature, Kelvin
P=1.31 atm
V=23.3 L
T=26+273=299 K
mol of sample :

Answer:
If the solution is not in contact with air, nothing will happen. If the solution is in contact with air, it will be not a reaction between copper, water and sodium chloride..
in the end there will be no reaction
At the boiling point, external pressure is equal to the vapor pressure of water. Therefore, the vapor pressure of water at an ecternal pressure of 404 kPa is equal to 404 kPa as well. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
18,1 mL of a 0,304M HCl solution.
Explanation:
The neutralization reaction of Ba(OH)₂ with HCl is:
2 HCl + Ba(OH)₂ → BaCl₂ + 2 H₂O
The moles of 17,1 mL≡0,0171L of a 0,161M Ba(OH)₂ solution are:
= 2,7531x10⁻³moles of Ba(OH)₂
By the neutralization reaction you can see that 2 moles of HCl reacts with 1 mole of Ba(OH)₂. For a complete reaction of 2,7531x10⁻³moles of Ba(OH)₂ you need:
= 5,5062x10⁻³moles of HCl.
The volume of a 0,304M HCl solution for a complete neutralization is:
= 0,0181L≡18,1mL
I hope it helps!
Approximately 71.77 grams. I think so