Answer:
16 g/mol
Explanation:
In CO2, it means we have 1 mole of carbon and 2 moles of oxygen.
However, we want to find the molar mass of just a single mole of oxygen.
Now, from tables of values of elements in electronic configuration, the molar mass of oxygen is usually approximately 16 g/mol.
In essence the molar mass is simply the atomic mass in g/mol
1 mol = 6.023x10^23 number of molecules (Avogadro's number)
1 : 6.023x10^23
X : 4.91x10^22
(6.023x10^23)X = 4.91x10^22
X = 4.91x10^22/6.023x10^23
X = 0.082 Moles
The standard atomic weight of a C is 12, and the standard atomic weight of a H is 1. So to find molar ratio of C and H in the compound: 60.0/12=5, 5.05/1=5. This means the molar ratio of C and H is 5:5, thus 1:1. Assuming the molecular formula is CnHn, to find molar mass: 12n + 1n = 78.12. n=78.12/(12+1) = 6. So the compound's molecular formula is C6H6, benzene.
Answer: placing coefficients
Explanation: In a balanced chemical equation, the total number of atoms of each element present is the same on both sides of the equation. Stoichiometric coefficients are the coefficients required to balance a chemical equation. These are important because they relate the amounts of reactants used and products formed.
D, litmus paper indicator