Answer:
1250N
Explanation:
This question is based on pascal's Law.
So By Pascal's Law
=
therefore =force on input piston =25N
= Force or weight on output person.
therefore after putting the values we get,
= (25x 1500)/30
=1250N
Pressure can be defined as the force acting on a perpendicular surface per unit area.
Force exerted by a man of mass 100 kg wearing snow shoes = m.a
Where m = mass of the man = 100 kg
a = acceleration due to gravity= 9.8
Force exerted by the man of mass 100 kg =
Force exerted by woman of mass 60 kg =
Force exerted by 100 kg man is greater than that exerted as 60 kg woman. The area on which this force is acting determines the pressure. Pressure is inversely proportional to the area on which the force acts. Therefore, the pressure exerted by 100 kg man wearing snow shoes is less than the pressure exerted by a 60 kg woman woman wearing high heels as the force acts over a larger area when the man wears snow shoes when compared to the force exerted over a smaller area in case of the woman wearing high heels.
Answer:
avogadro's constant
Explanation:
this is the fixed number of the atoms in the molecule of an element
avogadro's law states that equal volumes of gases<em> </em><em>at</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em> </em><em>contain</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>
<em>that</em><em> </em><em>is</em><em> </em><em>all</em><em> </em><em>gases</em><em> </em><em>with</em><em> </em><em>same</em><em> </em><em>temperature</em><em> </em><em>and</em><em> </em><em>pressure</em><em> </em><em>will</em><em> </em><em>always</em><em> </em><em>have</em><em> </em><em>equal</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>molecules</em><em> </em>
Answer : The value of rate of reaction is
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:
Rate law expression for the reaction is:
As per question,
a = order with respect to = 2
b = order with respect to = 1
Thus, the rate law becomes:
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant =
[NO] = concentration of NO =
= concentration of =
Now put all the given values in the above expression, we get:
Hence, the value of rate of reaction is
The ideal gas under STP is 22.4 L/mol. While the gas has a rule of P1V1/T1=P2V2/T2. So the volume under 101 kPa and 273 K is 0.2*22.4=4.48 L.