C. 2Fe2O3 would be the correct answer!
Answer:
k₂ = 4.06 x 10⁻² s⁻¹.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₁ = 5.8 × 10⁻³ s⁻¹, k₂ = ??? , Ea = 33600 J/mol, R = 8.314 J/mol.K, T₁ = 298.0 K, T₂ = 348.0 K.
- ln(k₂/5.8 × 10⁻³ s⁻¹) = (33600 J/mol / 8.314 J/mol.K) [(348.0 K - 298.0 K) / (298.0 K x 348.0 K)] = (4041.37) (4.82 x 10⁻⁴) = 1.9479.
- Taking exponential of both sides:
(k₂/5.8 × 10⁻³ s⁻¹) = 7.014.
∴ k₂ = 4.06 x 10⁻² s⁻¹.
C — all others endanger you.
Answer:
The answer to your question is:
52.- E, A, D, B, C, F
53.- D, B, F, C, A, E
Explanation:
52.- Gamma, Ultraviolet, Blue, Red, Infrared, Microwaves
53.- X-ray, ultraviolet, green, orange, infrared, radio
Explanation:
Ammonium Fluoride and Potassium Sulphate