Answer:
750 nm
Explanation:
= separation of the slits = 1.8 mm = 0.0018 m
λ = wavelength of monochromatic light
= screen distance = 4.8 m
= position of first bright fringe =
= order = 1
Position of first bright fringe is given as


λ = 7.5 x 10⁻⁷ m
λ = 750 nm
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
Answer:
a) 
b) 
c) 
Explanation:
the gravitational potential energy is given by:


The kinetic energy is given by:

the initial kinetic energy is zero because the motion started from rest, so:

applying the conservation of energy theorem:

The work done by the friction force is given by:

the angle of the force is 180 degrees because it's against the movement:
