In order to find the efficiency first we will find the Change in Potential energy of the small stone that robot picked up
First we will find the mass of the stone
As it is given that stone is spherical in shape so first we will find its volume



Now it is given that it's specific gravity is 10.8
So density of rock is

mass of the stone will be



now change in potential energy is given as

here
g = gravity on planet = 0.278 m/s^2
H = height lifted upwards = 15 cm


Now energy supplied by internal circuit of robot is given by

V = voltage supplied = 10 V
i = current = 1.83 mA
t = time = 12 s


Now efficiency is defined as the ratio of output work with given amount of energy used


so efficiency will be 23 %
Answer:
Did you ever get the answer?
Explanation:
Angstrom = 10^-10 m
for nucleus size are used fermi (femtometer 10^-15 m )
Atomic Number
or
Number of Protons
ΩΩΩΩΩΩΩΩΩΩ
Answer:
t = 0.029s
Explanation:
In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:
(1)
m: mass of the water balloon = 1.20kg
Δv: change in the speed of the balloon = v2 - v1
v2: final speed = 0m/s (the balloon stops in my hands)
v1: initial speed = 13.0m/s
Δt: interaction time = ?
The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

The interaction time to avoid that the water balloon breaks is 0.029s