Answer:
Computer, Microprocessor, Cell Phone, WWW, iPhone
Explanation:
i just did it and got it correct
I believe the statement that is true of metals and metalloids is B. Metals are good conductors and metalloids are bad conductors.
Answer : The correct option is, (a) paramagnetic with two unpaired electrons.
Explanation :
According to the molecular orbital theory, the general molecular orbital configuration will be,
![(\sigma_{1s}),(\sigma_{1s}^*),(\sigma_{2s}),(\sigma_{2s}^*),(\sigma_{2p_z}),[(\pi_{2p_x})=(\pi_{2p_y})],[(\pi_{2p_x}^*)=(\pi_{2p_y}^*)],(\sigma_{2p_z}^*)](https://tex.z-dn.net/?f=%28%5Csigma_%7B1s%7D%29%2C%28%5Csigma_%7B1s%7D%5E%2A%29%2C%28%5Csigma_%7B2s%7D%29%2C%28%5Csigma_%7B2s%7D%5E%2A%29%2C%28%5Csigma_%7B2p_z%7D%29%2C%5B%28%5Cpi_%7B2p_x%7D%29%3D%28%5Cpi_%7B2p_y%7D%29%5D%2C%5B%28%5Cpi_%7B2p_x%7D%5E%2A%29%3D%28%5Cpi_%7B2p_y%7D%5E%2A%29%5D%2C%28%5Csigma_%7B2p_z%7D%5E%2A%29)
As there are 14 electrons present in the given configuration.
The molecular orbital configuration of molecule will be,
![(\sigma_{1s})^2,(\sigma_{1s}^*)^2,(\sigma_{2s})^2,(\sigma_{2s}^*)^2,(\sigma_{2p_z})^2,[(\pi_{2p_x})^1=(\pi_{2p_y})^1],[(\pi_{2p_x}^*)^0=(\pi_{2p_y}^*)^0],(\sigma_{2p_z}^*)^0](https://tex.z-dn.net/?f=%28%5Csigma_%7B1s%7D%29%5E2%2C%28%5Csigma_%7B1s%7D%5E%2A%29%5E2%2C%28%5Csigma_%7B2s%7D%29%5E2%2C%28%5Csigma_%7B2s%7D%5E%2A%29%5E2%2C%28%5Csigma_%7B2p_z%7D%29%5E2%2C%5B%28%5Cpi_%7B2p_x%7D%29%5E1%3D%28%5Cpi_%7B2p_y%7D%29%5E1%5D%2C%5B%28%5Cpi_%7B2p_x%7D%5E%2A%29%5E0%3D%28%5Cpi_%7B2p_y%7D%5E%2A%29%5E0%5D%2C%28%5Csigma_%7B2p_z%7D%5E%2A%29%5E0)
The number of unpaired electron in the given configuration is, 2. So, this is paramagnetic. That means, more the number of unpaired electrons, more paramagnetic.
Hence, the correct option is, (a) paramagnetic with two unpaired electrons.