Answer: 3) 39.96 amu
Explanation:
Mass of isotope Ar- 36 = 35.97 amu
% abundance of isotope Ar- 36= 0.337% = 
Mass of isotope Ar- 38 = 37.96 amu
% abundance of isotope 2 = 0.063 % = 
Mass of isotope Ar- 40 = 39.96 amu
% abundance of isotope 2 = 99.600 % = 
Formula used for average atomic mass of an element :

![A=\sum[(35.97\times 3.37\times 10^{-3})+(37.96\times 6.3\times 10^{-4})+(39.96\times 0.996)]](https://tex.z-dn.net/?f=A%3D%5Csum%5B%2835.97%5Ctimes%203.37%5Ctimes%2010%5E%7B-3%7D%29%2B%2837.96%5Ctimes%206.3%5Ctimes%2010%5E%7B-4%7D%29%2B%2839.96%5Ctimes%200.996%29%5D)

Therefore, the average atomic mass of argon is 39.96 amu
Answer:
Waves involve the transport of energy without the transport of matter. In conclusion, a wave can be described as a disturbance that travels through a medium, transporting energy from one location (its source) to another location without transporting matter.
Explanation:
hope this helps, I tried to give an easy definition :)
Answer:True
Explanation: An anion has a larger radius than a neutral atom because it gains valence electrons. There are added electron/electron repulsions in the valence shell that expand the size of the electron cloud, which results in a larger radius for the anion.
hit the crown for me pls :)
Have a great day
Answer:
The particles move faster and are far apart
Explanation:
A substance may exist in three states of matter; solid, liquid and gas.
In the solid state, there is very strong intermolecular forces between the particles of the substance. They can only vibrate or rotate about their mean positions but can not translate.
In the liquid state, the particles of the substance have a greater degree of freedom than in the solid. The magnitude of intermolecular forces is lower than in solids, the molecules can move at low speeds.
In a gas, the molecules are separated from each other with negligible intermolecular interaction hence they move at very high speed.
Therefore, for the water gas particles in the air above the cup; the particles move faster and are far apart.