f(x) is a quadratic equation with the x-side squared and a is positive which means that the graph of the function is a parabola facing up. The range of f(x) is given by {y|y ≥ k}, where k is the y-coordinate of the vertex.
, written in vertex form is
, where (h, k) = (-1, -11)
Therefore, range ={y|y ≥ -11}
Given:
cos 120°
To find:
The exact value of cos 120° in simplest form with a rational denominator.
Solution:
We have,

It can be written as

![[\because \cos (90^\circ-\theta)=-\sin \theta]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Ccos%20%2890%5E%5Ccirc-%5Ctheta%29%3D-%5Csin%20%5Ctheta%5D)
![[\because \sin 30^\circ=\dfrac{1}{2}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Csin%2030%5E%5Ccirc%3D%5Cdfrac%7B1%7D%7B2%7D%5D)

Therefore, the exact value of cos 120° is
.
Hello!
f(g(x)) = 4 - <u>2</u><u> </u><u>×</u><u> </u><u>(</u><u>3</u><u>x</u><u>²</u><u>)</u> <=>
<=> f(g(x)) = 4 - 6x²
Answer: B. f(g(x)) = 4 - 6x²
Good luck! :)
Answer:

Step-by-step explanation:











Hope I helped!
Best regards! :D
~