It will take 1.11 min to heat the sample to its melting point.
Melting point = - 20°C
Boiling point = 85°C
∆H of fusion = 180 J/g
∆H of vap = 500 J/g
C(solid) = 1.0 J/g °C
C(liquid) = 2.5 J/g °C
C(gas) = 0.5 J/g °C
Mass of sample = 25 g
Initial temperature = - 40°C
Final temperature = 100°C
Rate of heating = 450 J/min
Specific heat capacity formula:- q = m ×C×∆T
Here, q = heat energy
m = mass
C = specific heat
∆T = temperature change
Melting point = - 20°C
C(solid) = 1.0 J/g °C
∆T = final temperature - initial temperature = -20 - (-40) = 20
Put these value in Specific heat capacity formula
q = m ×C×∆T
q = 25×1.0×20
=500J
The Rate of heating = 450 J/min
i.e. 450J = 1min
so, 500J = 1.11min
1.11 minutes does it take to heat the sample to its melting point.
The specific heat capacity is defined as the amount of heat absorbed in line with unit mass of the material whilst its temperature increases 1 °C.
Learn more about specific heat capacity here:- brainly.com/question/26866234
#SPJ4
Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g
Balance each one by adding electrons to make the charges on both sides the same:
Sn--> Sn2+ + 2 e-
Ag+ + 1 e- --> Ag
Now, you have to have the same number of electrons in the two half-reactions, so multiply the second one by 2 to get:
2 Ag+ + 2 e- --> 2 Ag
Now, just add the two half reactions together, cancelling anything that's the same on both sides:
2 Ag+ + Sn --> Sn2+ + 2 Ag
And you're done.
Answer:
a. alkyne
b. alkane
c. alkyne
d. alkene
Explanation:
The general formula for each class of compound is given below
Alkane: 
Alkene: 
Alkyne:
(assuming single multiple bonds)
Now let us classify according to the above formulas:
a. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
b. It has two hydrogen atoms more than the two times of carbon atoms hence, it's alkane
c. It has two hydrogen atoms less than the two times of carbon atoms hence, it's alkyne
d. It has hydrogen atoms two times of carbon atoms hence, it's alkene
Answer:
4
Explanation:
Si has atomic number 14 so the electronic configuration 2,8,4