Isn't it a because in b at the start of the equation the E in Fe just disappeared
Moles of solute does not change.
<span>Separate this redox reaction into its component half-reactions.
Cl2 + 2Na ----> 2NaCl
reduction: Cl2 + 2 e- ----> 2Cl-1
oxidation: 2Na ----> 2Na+ & 2 e-
2) Write a balanced overall reaction from these unbalanced half-reactions:
oxidation: Sn ----> Sn^2+ & 2 e-
reduction: 2Ag^+ & 2e- ----> 2Ag
giving us
2Ag^+ & Sn ----> Sn^2+ & 2Ag </span>Steve O <span>· 5 years ago </span><span>
</span>
Answer:
Boiling point for the solution is 100.237°C
Explanation:
We must apply colligative property of boiling point elevation
T° boiling solution - T° boiling pure solvent = Kb . m
m = molalilty (a given data)
Kb = Ebulloscopic constant (a given data)
We know that water boils at 100°C so let's replace the information in the formula.
T° boiling solution - 100°C = 0.512 °C/m . 0.464 m
T° boiliing solution = 0.512 °C/m . 0.464 m + 100°C → 100.237 °C
Split and merge into it. While they are alive, carbon returns from animals into water through waste products from respiration and defecation/urination. Another way when they are dead is from decaying remains. While they are alive, carbon returns from animals into water through waste products from respiration and defecation/urination.
Good enough?