Answer:
volume of the gas is 5.0L
Explanation:
Using Boyle's law that state the pressure of a gas is inversely proportional to volume of it occupies when temperature is constant, it is possible to write:
P₁V₁ = P₂V₂
<em>Where P is pressure, V is volume and 1 and 2 are initial and final states.</em>
<em />
If initial volume is 2.5L, initial pressure is 2.0atm and 1.0atm is final pressure, final volume is:
2.0atm*2.5L = 1atm V₂
5.0L = V₂
Thus, <em>volume of the gas is 5.0L</em>.
Answer:
C a chemical reaction formed
Explanation:
if something changes smell and nothing else it is a chemical reaction, every other answer does not make sense
The question is incomplete, complete question is :
In an organic structure, you can classify each of the carbons as follows: Primary carbon (1°) = carbon bonded to just 1 other carbon group Secondary carbon (2°) = carbon bonded to 2 other carbon groups Tertiary carbon (3°) = carbon bonded to 3 other carbon groups Quaternary carbon (4°) = carbon bonded to 4 other carbon groups How many carbons of each classification are in the structure below? How many total carbons are in the structure? How many primary carbons are in the structure? How many secondary carbons are in the structure? How many tertiary carbons are in the structure? How many quaternary carbons are in the structure?
Structure is given in an image?
Answer:
There are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Explanation:
Total numbers of carbon = 10
Number of primary carbons that is carbon joined to just single carbon atom = 6
Number of secondary carbons that is carbon joined to two carbon atoms = 1
Number of tertiary carbons that is carbon joined to three carbon atoms = 2
Number of quartenary carbons that is carbon joined to four carbon atoms = 1
So, there are 10 carbon atoms in the given structures out of which 6 are 1° , 1 is 2° , 2 are 3° and 1 is 4°.
Step 1 : Write balanced chemical equation.
CaF₂ can be converted to F₂ in 2 steps. The reactions are mentioned below.
I] 
II] 
The final balanced equation for this reaction can be written as

Step 2: Find moles of CaF₂ Using balanced equation
We have 1.12 mol F₂
The mole ratio of CaF₂ and F₂ is 1:1

Step 3 : Calculate molar mass of CaF2.
Molar mass of CaF₂ can be calculated by adding atomic masses of Ca and F
Molar mass of CaF₂ = Ca + 2 (F)
Molar mass of CaF₂ = 40.08 + 18.998 = 78.08 g
Step 4 : Find grams of CaF₂
Grams of CaF₂ = 
Grams of CaF₂ = 87.45 g
87.45 grams of CaF2 would be needed to produce 1.12 moles of F2.
Additional reactants would break equilibrium