- Endothermic reaction means the reactant side takes heat from surrounding and get decomposed i.e ∆H=-ve
- If the equation is exothermic then it means the reactant is happy to decompose .But it's not as it's endothermic
Now
- HgO is Omitted from our solution option.
Hg is a atom so no bonds hence no bond strength occurs.
- O_2 is a molecule and so it's our answer .
Explanation:
The given data is as follows.
Thickness (dx) = 0.87 m, thermal conductivity (k) = 13 W/m-K
Surface area (A) = 5
, 
According to Fourier's law,
Q = 
Hence, putting the given values into the above formula as follows.
Q = 
= 
= 5902.298 W
Therefore, we can conclude that the rate of heat transfer is 5902.298 W.
Weight of the balloon = 2.0 g
Six weights each of mass 30.0 g is added to the balloon.
Total mass of the balloon = 2.0 g + 6*30.0 g = 182 g
Density of salt water = 1.02 g/mL
Calculating the volume from mass and density:

Converting the volume from mL to cubic cm:

Assuming the balloon to be a sphere,
Volume of the sphere =
π

r = 3.49 cm
Radius of the balloon = 3.49 cm
Diameter of the balloon = 2 r = 2*3.49 cm = 6.98cm
Answer:
105 grams PbI₂
Explanation:
Pb(NO₃)₂ + 2KI => 2KNO₃ + PbI₂(s)
moles Pb(NO₃)₂ = 0.265L(1.2M) = 0.318 mole
moles KI = 0.293(1.55M) = 0.454 mole => Limiting Reactant
moles PbI₂ from mole KI in excess Pb(NO₃)₂ = 1/2(0.454 mole) = 0.227 mol PbI₂
grams PbI₂ = 0.227 mol PbI₂ x 461 g/mole = 104.68 g ≈ 105 g PbI₂(s)