Answer:
When the hammer is in the sun, heat flows by radiation
When you pick up the hammer, heat flows by conduction
Explanation:
As the hammer lies in the sun, heat is transferred to the hammer by radiation. Heat energy reaches the earth from the sun by radiation. Radiation is a mode of beat transfer in which heat is transferred without a material medium.
When you pick up the hammer, heat flows to your hand by conduction because your body is a conductor of heat.
Answer:
B. It would lead to an increase of global temperatures.
Explanation:
Gas burns when it is hot. Therefore the more gas that our cars consume, the hotter the air will be when the car releases those gas vapors. Causing the air to become hotter.
Hope this helped <3 :) brainliest?
<h3><u>Answer</u>;</h3>
Concave Lenses
<h3><u>Explanation</u>;</h3>
- A concave lens is thin in the middle and thick at the edges, such that it seems to cave inwards. It spreads light rays apart producing an image smaller than the actual object.
- <em><u>Images formed by a concave lens are virtual, upright, reduced in size and located on the same side of the lens as the object. Diverging lenses or concave lens always produce images that share these characteristics. The location of the object does not affect the characteristics of the image. </u></em>
Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M
Answer:
4.81×10¹⁰ atoms.
Explanation:
We'll begin by converting 3.2 pg to Ca to grams (g). This can be obtained as follow:
1 pg = 1×10¯¹² g
Therefore,
3.2 pg = 3.2 pg × 1×10¯¹² g / 1 pg
3.2 pg = 3.2×10¯¹² g
Therefore, 3.2 pg is equivalent to 3.2×10¯¹² g
Next, we shall determine the number of mole in 3.2×10¯¹² g of Ca. This can be obtained as follow:
Mass of Ca = 3.2×10¯¹² g
Molar mass of Ca = 40.08 g/mol
Mole of ca=.?
Mole = mass /molar mass
Mole of Ca = 3.2×10¯¹² / 40.08
Mole of Ca = 7.98×10¯¹⁴ mole.
Finally, we shall determine the number of atoms present in 7.98×10¯¹⁴ mole of Ca. This can be obtained as illustrated below:
From Avogadro's hypothesis,
1 mole of Ca contains 6.02×10²³ atoms.
Therefore, 7.98×10¯¹⁴ mole of Ca will contain = 7.98×10¯¹⁴ × 6.02×10²³ = 4.81×10¹⁰ atoms.
Therefore, 3.2 pg of Ca contains 4.81×10¹⁰ atoms.