Answer: Kinetic Energy of the atoms also increases.
Explanation: We are given that the temperature of the gas increases.
Relation between kinetic energy and temperature follows:

where, K = Average Kinetic energy
R = Gas constant
T = Temperature
= Avogadro's number
As seen from the relation above, the Kinetic energy of the gas is directly proportional to the temperature, hence as the temperature increases, kinetic energy of the atom also increases.
Answer:
156 Hydrogen atoms
Explanation:
<u>Any acyclic alkane has a molecular formula that can be expressed as</u>:
CₙH₂ₙ₊₂
Where <em>n</em> is any integer and the number of carbon atoms. For example, Propane has 3 carbon atoms, this means it would have [2*3+2] 8 hydrogen atoms, resulting with a formula of C₃H₈.
An acyclic alkane with 77 carbon atoms would thus have:
2*77 + 2 = 156 hydrogen atoms
It must be made of matter because anything and everything is made up of atoms. The other three options are made of atoms but they are also matter.
This is the balanced eq
N2 + 3H2 -> 2NH3
first you need to find mole of N2 by using
mol = mass ÷ molar mass.
mol N2= 20g ÷ (14.01×2)g/mol
=0.7138mol
then look at the coefficient between H2 and NH3.
it is N2:NH3
1:2
0.7138:0.7138×2
0.7138:1.4276 moles
moles of NH3 = 1.4276 moles