1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hodyreva [135]
2 years ago
9

Calculate the final concentration of each of the following:

Chemistry
1 answer:
kkurt [141]2 years ago
7 0

Answer:

1. 2 M

2. 2 M

Explanation:

1. Determination of the final concentration.

Initial Volume (V₁) = 2 L

Initial concentration (C₁) = 6 M

Final volume (V₂) = 6 L

Final concentration (C₂) =?

The final concentration can be obtained as follow:

C₁V₁ = C₂V₂

6 × 2 = C₂ × 6

12 = C₂ × 6

Divide both side by 6

C₂ = 12 / 6

C₂ = 2 M

Therefore, the final concentration of the solution is 2 M

2. Determination of the final concentration.

Initial Volume (V₁) = 0.5 L

Initial concentration (C₁) = 12 M

Final volume (V₂) = 3 L

Final concentration (C₂) =?

The final concentration can be obtained as follow:

C₁V₁ = C₂V₂

12 × 0.5 = C₂ × 3

6 = C₂ × 3

Divide both side by 3

C₂ = 6 / 3

C₂ = 2 M

Therefore, the final concentration of the solution is 2 M

You might be interested in
1-<br> the<br> Nalt and Gil-<br> Cu2+<br> ad out- <br> what are the spectator ions in this reaction
Mrac [35]

Answer:

cu2 is 5he correct answer

3 0
1 year ago
Consider the pka (3.75) of formic acid, h-cooh as a reference. with appropriate examples, show how inductive, dipole, and resona
Luden [163]
Formic acid is the simplest carboxylic acid with a structure of HCOOH and has a pka of 3.75. The pka refers to the acidity of the molecule, which in this example refers to the molecules ability to give up the proton of the O-H. A decrease in the pka value corresponds to an increase in acidity, or an increase in the ability to give up a proton. When an acid gives up a proton, the remaining anionic species (in this case HCOO-) is called the conjugate base, and an increase in the stability of the conjugate base corresponds to an increase in acidity.

The pka of a carboxylic can be affected greatly by the presence of various functional groups within its structure. An example of an inductive effect changing the pka can be shown with trichloroacetic acid, Cl3CCOOH. This molecule has a pka of 0.7. The decrease in pka relative to formic acid is due to the presence of the Cl3C- group, and more specifically the presence of the chlorine atoms. The electronegative chlorine atoms are able to withdraw the electron density away from the oxygen atoms and towards themselves, thus helping to stabilize the negative charge and stabilize the conjugate base. This results in an increase in acidity and decrease in pka.

The same Cl3CCOOH example can be used to explain how dipoles can effect the acidity of carboxylic acids. Compared to standard acetic acid, H3CCOOH with a pka of 4.76, trichloroacetic acid is much more acidic. The difference between these structures is the presence of C-Cl bonds in place of C-H bonds. A C-Cl bond is much more polar than a C-H bond, due the large electronegativity of the chlorine atom. This results in a carbon with a partial positive charge and a chlorine with a partial negative charge. In the conjugate base of the acid, where the molecule has a negative charge localized on the oxygen atoms, the dipole moment of the C-Cl bond is oriented such that the partial positive charge is on the carbon that is adjacent to the oxygen atoms containing the negative charge. Therefore, the electrostatic attraction between the positive end of the C-Cl dipole and the negative charge of the anionic oxygen helps to stabilize the entire species. This level of stabilization is not present in acetic acid where there are C-H bonds instead of C-Cl bonds since the C-H bonds do not have a large dipole moment.

To understand how resonance can affect the pka of a species, we can simply compare the pka of a simple alcohol such as methanol, CH3OH, and formic acid, HCOOH. The pka of methanol is 16, suggesting that is is a very weak acid. Once methanol gives up that proton to become the conjugate base CH3O-, the charge cannot be stabilized in any way and is simply localized on the oxygen atom. However, with a carboxylic acid, the conjugate base, HCOO-, can stabilize the negative charge. The lone pair electrons containing the charge on the oxygen atom are able to migrate to the other oxygen atom of the carboxylic acid. The negative charge can now be shared between the two electronegative oxygen atoms, thus stabilizing the charge and decreasing the pka.
3 0
3 years ago
1. Find the masses of the following amounts.
In-s [12.5K]

The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of  3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm

<h3>What is Mole ?</h3>

A mole is a very important unit of measurement that chemists use.

A mole of something means you have 6.023 x 10 ²³ of that thing.

  • For 2.15 mol of hydrogen sulphide (H₂S) :

1 mole hydrogen sulphide (H₂S) = 34.08088 grams

Therefore,

2.15 mol of hydrogen sulphide (H₂S) = 34.08088 grams x 2.15 mol

                                                              = 73.272 gm

  • For 3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) ;

1 mol of lead(II) iodide, (PbI₂) = 461.00894 grams

Therefore,

3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) = 461.00894 grams x 3.95 × 10⁻³ mol

                                                                  = 1.82 gm

Hence,The mass of 2.15 mol of hydrogen sulphide (H₂S) will be 73.272 gm and the mass of  3.95 × 10⁻³ mol of lead(II) iodide, (PbI₂) will be 1.82 gm

Learn more about mole here ;

brainly.com/question/21323029

#SPJ1

7 0
2 years ago
Metals react with ______ to form compounds that are alkaline.
kondor19780726 [428]

Metals react with ______ to form compounds that are alkaline.

A. metalloids

B. oxygen (O)

C. non-metals

D. hydrogen (H)

The answer is D, Hydrogen (H).

7 0
2 years ago
Read 2 more answers
On a cool morning, uyen’s breath can form a cloud when she breathes out. which changes of state are most responsible for uyen se
Ganezh [65]
<span>You may already know that when you breathe in, your body takes in oxygen from the air. When you breathe out, your lungs expel carbon dioxide back into the air. But the breath you breathe out contains more than just carbon dioxide.</span>

When you exhale (breathe out), your breath also containsmoisture. Because your mouth and lungs are moist, each breath you exhale contains a little bit of water in the form of water vapor(the gas form of water).

For water to stay a gas in the form of water vapor, it needs enough energy to keep its molecules moving. Inside your lungs where it's nice and warm, this isn't a problem.

4 0
2 years ago
Read 2 more answers
Other questions:
  • The equilibrium constant kc for the reaction hf(aq) + h2o(l) h3o+(aq) +f-(aq) is 3.5 x 10-4. what is the equilibrium concentrati
    12·1 answer
  • What's the formula unit for magnesium and sulfur?
    11·2 answers
  • . A sample of crude oil has a density of 0.87 g/mL. What volume (in liters) does a 3.6 kg sample of this oil occupy
    5·1 answer
  • A decomposition reaction has a half-life that does not depend on the initial concentration of the reactant.what is the order of
    15·1 answer
  • Why doesn't light get absorbed
    10·1 answer
  • What is another name for the galvanic cell?
    15·2 answers
  • Given: 4.39m/sec Go: km/hr
    6·1 answer
  • QUICK<br> Which of these is a ball and stick model?
    14·1 answer
  • Which is most likely to provide the best data on volcanic activity over the last 2000 years?
    5·1 answer
  • How many moles of sodium are produced in 46g of substance?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!