Explanation:
The given data is as follows.
,
= 2257 kJ/kg,
= ?
For water,
= 4.184 
Formula to calculate heat of vaporization is as follows.
= 
Hence, putting the values into the above formula as follows.
= 
= 
= 2257 kJ/kg - 376.56 kJ/kg
= 1880.44 kJ/kg
Thus, we can conclude that enthalpy of liquid water at
is 1880.44 kJ/kg.
The acid dissociation constant or Ka is a value used to measure the strength of a specific acid in solution. For a general dissociation of an acid solution,
HA = H+ + A-
we express Ka as follows:
Ka = [H+] [A-] / [HA]
Where the terms represents the concentrations of the acid and the ions. Assuming that the weak acid in the problem is HA, we first calculate for the concentration of H+ from the pH.
pH = - log [H+]
3.25 = - log [H+]
[H+] = 0.0005623 M
By the ICE table, we can calculate the equilibrium concentrations,
HA = H+ + A-
I 0.175 0 0
C -x +x +x
--------------------------------------------------
E .174438 0.0005623 0.0005623
Ka = (0.0005623) (0.0005623) / .174438
Ka = 1.81x10^-6
Alfred Wegener came up with the idea
the answer is B. Atmosphere
Answer:
The statements which are true among these are: (a),(b) and (c) because,
(a) The simplest organic compounds which contains only carbon and hydrogen atoms are called hydrocarbons.
(b) The IUPAC naming of organic compounds have some rules for the naming of compounds, which consists of
- Finding the longest chain present in the compound called parent chain.
- A prefix for any substituent attach to the parent chain.
And lastly a suffix for the type of bond that molecule have.
(c) Isomers are the compound which same same molecular formula but different arrangement of molecules, due to this different arrangement they have different physical and chemical properties.