Answer:
4. homogeneous; distillation
Explanation:
Gasoline and motor oil are chemically similar. They are both mixtures of non polar hydrocarbons containing carbon and hydrogen atoms. However, motor oil is much more viscous Motor Oil. Hence we can say that the mixture of gasoline and motor oil are homogeneous and they can be separated by distillation.
Answer:
And contains 22 electrons
Answer:
2.2 x 10²² molecules.
Explanation:
- Firstly, we need to calculate the no. of moles in (6.0 g) sodium phosphate:
<em>no. of moles = mass/molar mass </em>= (6.0 g)/(163.94 g/mol) = <em>0.0366 mol.</em>
- <em>It is known that every mole of a molecule contains Avogadro's number (6.022 x 10²³) of molecules.</em>
<em />
<u><em>using cross multiplication:</em></u>
1.0 mole of sodium phosphate contains → 6.022 x 10²³ molecules.
0.0366 mole of sodium phosphate contains → ??? molecules.
<em>∴ The no. of molecules in 6.0 g of sodium phosphate</em> = (6.022 x 10²³ molecules)(0.0366 mole)/(1.0 mole) = <em>2.2 x 10²² molecules.</em>
<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.